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Bestribed here 18 the structure and
theory for a sequential quadratic
programming algorithm for solving large,
sparse nonlinear optimization problems.
Also provided are the details of a
computer implementation of the
algorithm, along with test results. The
algorithm is based on Han's sequential
quadratic programming method. It
maintains a sparse approximation to the
Cholesky factor of the Hessian of the
Lagrangian and stores all gradients in a
sparse format. The solution to the
quadratic program generated at each step
is obtained by solving the dual
quadratic program wusing a projected
conjugate gradient algorithm. Since
only active constraints are considered
in forming the dual, the dual problem
will normally be much smaller than the
primal quadratic program and, hence,
much easier to solve. An updating
procedure 1is employed that does not
destroy sparsity. .

Several test problems, ranging in
size from 5 to 60 variables were solved
with the algorithm. These results
indicate that the algorithm has the
potential to solve large, sparse
nonlinear programs. The algorithm is
especially attractive for solving

problems having nonlinear constraints. - L
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INTRODUCTION

Constrained nonlinear optimization has been the subject of a
significant amount of research during the past two decades. As a
result, a variety of different types of algorithms for solving nonlinear
programs have been developed and tested. (See Lasdon and Waren [1979]
for a report on the status of nonlinear programming software.) Many of
these algorithms, some based on the sequential quadratic programming
(SQP) method to be described later, have been found quite efficient for
solving small to medium—-sized problems. As yet, however, there have
been few attempts to construct algorithms for solving large-scale

nonlinear programs.

Those algorithms for which software now exists are not readily
adapted to large problems because they typically do not take advantage
of the sparsity of the Hessian matrices normally associated with large-
scale systems. This is a serious defect since the storage and handling
of large, dense Hessian matrices is prohibitively expensive. Those few
algorithms that have been specifically designed for large-scale problems
are normally considered most efficient for special types of problems,
such as geometric programs or those with linear constraints (for

instance, see Murtagh and Saunders [1982]).
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This paper presents an algorithm, using the aforementioned SQP

method, that has been developed to handle large nonlinear programs,

including those with nonlinear constraints.

This algorithm has several unique features. It maintains a sparse
approximation to the Cholesky factorization of the Hessian of the
Lagrangian function. The quadratic program generated at each iteration
of the SQP method is transformed into a quadratic program having only
nonnegativity constraints corresponding to the multipliers associated
with inequality éonstraints in the original nonlinear program. The
transformed quadratic program, which is always feasible, is then solved
using a projected preconditioned conjugate gradient (CG) method, and
finally, the algorithm uses a quasi-Newton update scheme for the

factorization of the Hessian approximation that ignores £111-1in.

The general form of the nonlinear program to be considered here is

(1) min £f(x)

x ¢ R?

subject to gj(x) <0, =1, 2, ..., m,

hk(x)-o,k-m+1, seey, m + P

We will normally assume that £, 81> 825 *ovs 8p» Ny 4 19 ooy Mg 4 p are

twice continuously differentiable.
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Part I of this report discusses the structure and theory of the
algorithm. The discussion focuses on the features that differ from a
standard SQP algorithan. Part II describes the actual implementation of

the algorithm and oresents test results for several problems.
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NOTATION

We follow the following notational conventions. The gradient of a
real-valued function f of the vector x will be denoted by Vf(x), the
Hessian of £ by sz(x). The multiplier vector will be written as
(u', v')', where u is the multiplier vector corresponding to inequality
constraints and v is the multiplier vector for equality constraints.
The transpose of a matrix Q will be denoted by Q'. Likewise, the
transpose of the column vector u will be the row vector u'. Note that
no special notation is used for the mulciplieré corresponding to ubper .

or lower bounds on variables.

The Lagrangian function will be denoted by 2(x, u, v) with the
Hessian of the Lagrangian denoted by Vﬁxl(x, u, v) and its positive

definite representation by Q=LL' where L is a lower triangular matrix.
The step vector will be s and the step length parameter will be

a@. The current estimate of a solution will be given by x® and a new

estimate by x™.
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For a scalar a, [a], = max{0, a}, Ial = max{-a, a}. For a vector

z, let 'z' = max{lzil} and |z|2 = [T zi ﬁQ.
Let A be a matrix. The i, j-th element of A is Aij’ the j-th

column is A.j and the i-th row is Ai.' The unit vector having all zeros

except in the i-th component will be denoted by e .
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I.1 THE SEQUENTIAL QUADRATIC PROGRAMMING METHOD

The sequential quadratic programming method generates a sequence of
quadratic programs (QP) that approximate the local behavior of the
original ronlinear proétam (1). The Hessian of this subproblem is
updated from iteration to iteration using one of the variable metric
updating formulas (Han [1976]). The solution of the QP subproblem
generated at each iteration determines the step direction for that
iteration, and the multiplier vector associated with this solution to
the QP is taken as an approximation to the multiplier vector of (1).

The following is a brief overview of the SQP method.

Initially, let us assume that (1) has only inequality constraints.
The generalization to include equality constraints is straightforward.

Let x©

e R® be the current estimate of the solution to (1), u€ & R® the
current estimate of the Lagrangian multiplier vector associated with the

solution of (1), and (x, u) the Lagrangian function, i.e.,
2x, u) = £(x) + u'g(x).

Let (x*, u*) be a Kuhn-Tucker point corresponding to a local minimum of

(1); that is, (x*, u*) satisfies the following:

PREVIOUS PAGE
1S BLANK

-.- a o

R
hJ

~o -

Yo’



(2a) 9V a(x*, u*) = 0,
(2b) u*'g(x*) = O,
(2c) wu* > 0, and

(2d) g(x*) < 0.

The SQP algorithm determines s e R™ and s e R, such that

X

(x¢ + sS, ut + sS) 1s a first-order approximate solution to the equation

defined by (2a) - (2d). It can be shown that s§ is the solution to the

following quadratic program:

(3) min  VE(x®)'sy + (1/2)s,'v2 (xS, u)s

5x

X

subject to  g(x%) + vg(x®)'s, < 0

and u€ + sﬁ is the corresponding multiplier vector (see Boggs, Tolle,

and Wang [1982]).

The SQP iteration for a nonlinear program having both equality and

inequality constraints can now be described as follows:

[1] Given x®, a current iterate, and Q.» a current approximation
of the Hessian of the Lagrangian, determine a Kuhn-Tucker point

(s;, ug, vg) of the quadratic program

L
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NS min  VE(x)'s, + (1/2)8,'Q s,

( Sy .

o

l\?

‘R0 subject to gj(xc) + ng(xc)'sx <0, =1, oo, m

e

e hk(xc) + th(xc)'sx =0, k=m+1, .o., m+ p.
w,

RS [2] Set

SOA)

n

x® = x®+ asg, u? n ¢

= c =
ugs V vq
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where q i3 a step—-length parameter chosen so that an appropriate penalty

u.i

function is decreased.

LA

PR A

[3] Update Q. so that Q, is an approximation of

L] \
! V§x£(xn, u?, vh.

:":\'

l—.l

With the above iteration as a basis, the SQP method would be

l:‘* -

[d

expected to have many of the properties of the well-known variable

ﬁﬁﬁk

metric methods for unconstrained minimization, since in the absence of

1o

constraints, the SQP method reduces to a variable metric algorithm. For

P~
AAD

the constrained case, however, the Hessian (of the Lagrangian) need not

CRIRT

be positive definite, thus the standard positive definite updates such

v

&,
L

as the BFGS or DFP (see Fletcher [1980] and Dennis and Schnabel [1983])

'Yl
Py )

c'.’l
1

may not be appropriate. To date, local superlinear convergence has not

been established for the use of positive definite updates except in the
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Lj case where the Hessian of the Lagrangian at the solution is positive
)

l? definite. (See Han [1976] and Boggs, Tolle, and Wang [1982].)

a: There are nonpositive definite choices for the matrices Q. that
! will lead to local superlinear convergence, as shown by Wilson [1963] *
td

~t‘ (who uses the Hessian of the Lagrangian itself) and Han [1976]. But in
-t.

e -
e, these cases the solution of the quadratic program in step [l] is not
( straightforward; in fact, there may be multiple solutions. Nocedal and
;{: Overton [1983] have recently developed an updating scheme for equality

constrained problems that may help to resolve this difficulty, but its

. application to general problems is not yet ensured.

T

Col

_E{ In light of the absence of a feasible alternative, most optimizers
B\ .
( ' imﬁlementing an SQP-type algorithm have opted for using positive
o .
9

}ﬁ definite updates of the BFGS or DFP type. The experimental results have
-

Y been quite good (see Hock and Schittkowski [1981]) despite the lack of a
ﬂ“ J

) solid theoretical underpinning. The approach of this paper is based on
,-

:: the same practical considerations, and hence a positive definite
ii: updating scheme will be used.

@

s .
! A vital part of an SQP algorithm, as for any algorithm for solving
5
,}i (1), is a provision for forcing convergence from a remote starting
Y point. In the unconstrained case, this is accomplished by requiring a
o

3: decrease in the objective function at each iterate. For constrained
.'"‘

*: optimization, reduction of the objective function mst be balanced
:\
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against satisfying the constraints. This balancing act 1is usually

achieved by requiring a reduction in a "merit” or "penalty” function at

each iteration. Han [1977] proposed that

(3 T s ol
(4) p(x) =f(x)+r { T [g,(x)], + % h, (x)
) r jal 3T feme K

be used as a merit function, where r is larger than the absolute value
of any of the multipliers associated with the solution to (l). Under
reasonable conditions, he shows that any sequence {(xk, uk, vk)}
generated using the SQP algorithm with a positive definite update and
this merit function will converge to a Kuhn-Tucker point. The algorithm
developed for this paper employs Han's merit function, thus guaranteeing

global convergence under the conditions imposed by Han.

In Qpite of ensuring global convergence, this merit function is not
entirely satisfactory. 1In particular, it does not guarantee that full
steps, 1l.e., a = 1, will be taken as xk approaches x*. This may
restrict the convergence rate to be less than superlinear. Chamberlain,
Lemarechal, Pedersen, and Powell [1979], Boggs and Tolle {1980, 1981},
and Bertsekas [1980, 1981] have developed other merit functions that do

allow for a = 1 near a solution. However, these merit functions are

computationally more complex than (4) and were not considered suitable

for a large—-scale algorithm.
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General references on nonlinear programming methods that contain

discussions of the SQP method and some of the other available methods

include Fletcher [1981] and Gill, Murray, and Wright [1981].
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f{ﬁ ‘ I.2 STRUCTURE OF A SPARSE SQP ALGORITHM
N
-‘;2
®)] -
a3 The algorithm presented here is designed to solve large-scale
fifi nonlinear programming problems having sparse Lagrangian Hessians.
a ,w." )
“35 Because it uses the SQP method, the algorithm is particularly well
1 b
\ 254 suited for solving problems having nonlinear constraints. The algorithm
A
-iﬁi allows for any sparsity pattern in the Hessian of the Lagrangian, i.e.,
o
: no particular sparsity pattern is assumed. Linear constraints and
[
SN upper- and lower-bound constraints on the variables are handled
SR
E;;: explicitly by the algorithm. The number of constraints is theoretically
tj:: unlimited; however, an active set strategy is used and the number of
k)ﬁ. constraints active at any given time is constréined by the amount of
ji:& memory available. Also, the algorithm is more efficient when the number
4
20
tf of active constraints is small relative to the number of variables.
)
e

The following discussion describes the structure of the algorithm.

The discussion focuses on the features of the algorithm that permit the

SQP method to be applied to larger problems.
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I.2.1 SPARSITY

The algorithm described here is designed to exploit the sparsity
often found in large-scale problems. Such problems usually have sparse
Lagrangian Hessians and sparse gradients. Handling sparse gradients is
not difficult and most algorithms can be easily adapted to do so.
However, the handling of a sparse Lagrangian Hessian is not so easy
because, in general, matrix operations do not preserve sparsity. The
Hessian of the Lagrangian, or an approximation of it, appears in most
nonlinear optimization algorithms and will normally be used as the
coefficient matrix of a system of equations that is used to compute a
step direction as in the SQP algorithm. Exploiting the sparsity of the
Hessian of the Lagrangian 1is important for two reasons. First, in large
problems using the sparsg'struCture often reduces the total amount of
computation required. Second, storing a sparse matrix requires much
less memory than storing a full matrix. Even if a computer has
unlimited capacity for storing the matrix, such as is the case for
virtual memory machines, manipulation of the full matrix may cause
considerable paging of memory as different parts of the matrix are
accessed. The resulting I/0 time for swapping the different parts of
the matrix between core and a high-speed storage device can be

expensive.

We have chosen to store the representation of the Hessian of the

Lagrangian as a lower triangular matrix under the assumption that the

\'cw
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approximation to the Hessian of the Lagrangian will be maintained as a

o 4
v /

(L
‘l'l
P4

positive definite matrix. Unfortunately, the Cholesky factor of a

o~
-

:f:- sparse symmetric and positive definite matrix need not be sparse.

N

¥§§ George and Liu [1981], however, describe an algorithm for permuting the
C; ) rows and columns of a sparse, symmetric positive definite matrix that
‘Egs significantly reduces the fill-in that occurs in the lower triangular
E;S Cholesky factor. The authors also describe a storage scheme for the
e

sparse matrix and code for solving systems of equations defined by the

o s,

4

A:fﬁ original matrix by performing forward and backward substitution on the
RS

f{iu triangular factor to obtain the solution.

R

::J Representing the Hessian approximation as the lower triangular
\'Cs'

:}:. factor has other computational advantages. The next section discusses
*.‘:-.‘

(", the solution of the dual to the quadratic program defined by each

-jui iteration of the SQP algorithm. Generation of this dual problem is much
:;{i simpler if the lower triangular factor is available. (See section
;)" 11.3.4.)

1.2.2 SOLVING THE QUADRATIC PROGRAM

o

;E;: The quadratic program (QP) generated at each iteration of the SQP
“% a7,

e method has the form

Y,

Ld
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N
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(5) min (1/2)s'Qs + q's
s

subject to As < a

Bs = b .

For a large-scale, sparse problem Q will be a large, sparse matrix.
Standard methods for solving quadratic programs, such as the pivoting
methods of large-scale linear programming methods, either do not take
advantage of the sparsity structure or are too complicated for repeated
use in a nonlinear programming code. The quadratic program generated by
the SQP method may be infeasible. By solving the Wolfe dual (Wolfe

[1961]) to (5) these problems can be avoided.

If‘(S) 1s feasible and Q is positive definite, then the Wolfe dual
of (5) will be feasible and will have a nonempty solution set. The
structure of this algorithm maintains a positive definite representation
of Q. If the set {s : As < a, Bs = b } is empty, the solution obtained
from solving the Wolfe dual of (5) will be a "least infeasible” solution
of (5). (See appendix B.). We solve a transformed version of the dual
problem rather than the primal problem because it is a quadratic program
having only nonnegativity constraints on variables that are the
multipliers corresponding to the inequality constraints in (5). A
projected preconditioned conjugate gradient algorithm for solving the

transformed Wolfe dual problem is given in section I.3.

-16-
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There are several advantages to solving the dual QP. If the number
of active constraints is small relative to the number of variables in
the nonlinear program, then the dual problem will be much smaller than
problem (5). Moreover, since the solution to (5) is the step direction
used by the SQP method, ome would expect the step directions to change
significantly from iteration to iteration, even when close to a solution
of the nonlinear program. However, the solution to the dual problem can
be shown to be a good approximation to the multiplier vector of the
nonlinear program and should not change much from iteration to
iteration. Consequently, a great efficiency is gained by using the
estimated multiplier vector from the preceding iteration as the initial

estimate in solving the dual.

Choi, Haug, Hou, and Sohoni [1983] report on the use of an
algorithm developed by the Russién Pshenichny [1970] to solve optimal
design problems. Pshenichny's algorithm is similar to the one described
here ian that he solves a sequence of quadratic programs by solving their

duals. His sequence of quadratic programs is similar to Han's except

that the matrix defining the quadratic program is always the identity,

i.e., no second order information is used. Thus the algorithm is

. »
1@
i ot

RS

significantly different from that proposed herein.
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I.2.3 STEP-LENGTH CONTROL

Having determined a step direction by obtaining the solution to
(5), it 1s necessary to take a reasonable step in that direction. Since
large problems are being solved, the method of controlling the step
length must be relatively simple. We have chosen to use the penalty or

merit function of Han [1977]

(6) ¢(a) = f(x + as)

{ m mtp ' |}
+r T [g,(x + as)] + £ (x + as) ,
g1 3 o eml "

vhere x is the current estimate of the solution to the NLP and s is the
step direction. The step—~length parameter is «. The scalar, r, is
chosen to be larger than the largest multiplier in absolute value. A
step, as, will be taken if an a can be found that produces an acceptable

decrease from ¢(0) to ¢(a). The details can be found in section I.4.

I.2.4 UPDATING PROCEDURES

The standard SQP method maintains an approximation to the Hessian
of the Lagrangian which is updated after each iteration using one of the
well-known matrix updating methods. One of the more common methods is

the BFGS updating method (Dennis and More [1977]). The algorithm given

here, however, maintains a sparse representation of the approximation to




EE; the Hessian which the standard BFGS updating scheme does not do.

.;' Therefore, we have chosen a method of Goldfarb [1976] for updating'the
QEEE Cholesky factor of a positive definite matrix. Fill-in 1is ignored in
f:§ applying the method. If fill-in were allowed, the method would produce
) * the standard BFGS update for the Cholesky factow. Details can be found
R

in section I.5.

)0 .l ‘e tu s
f

I.2.5 A BASIC ITERATION OF THE ALGORITHM

g’ ¢ . .
r

o

P
3
N 4
:33 The following is a description of a basic iteration of the
e
L B algorithm developed here. The algorithm uses an active set strategy.
S
:f; Equality constraints are always active and inequality constraints are
LAY ’
LR
N active at the current iterate if they are infeasible or nearly so at
LSRN
( that point. Upper- and lower-bound constraints are treated as general
;}i inequality constraints in the description of a basic iteration. The
N .)..'
:;g actual implementation, as described in Part II, explicitly handles
BN
) upper- and lower-bound constraints.
N
4
e
:;: [1] Solve the transformed QP for the multiplier vector. Let
\,'.
[ ] (x%, u®, v©) and L. be the current estimate of the Kuhn-Tucker
ﬁfﬂ vector and the approximate lower triangular factor of the Lagrangian
ﬂgﬂ Hessian, respectively. The QP generated by the standard SQP method is
(3
e
e
C AR
B
ra:a
0.
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(7) wmin 7E(x%)'s + (1/2)s'Lch's

s € R
subject to: Vg(x%)'s + g(x€) < 0

Vh(x%)'s + h(x®) =0 .

P VeI T W s U

Let g be the vector of active inequality constraints -- including active

—

upper- and lower-bound constraints. The solution to (7) and the

associated multiplier vectors are obtained by transforming (7) into

(8) min (1/2)(u', v') K (u', v')' + (u', v') k
- u e R®

v ¢ RP

.
« 2

.
0
a

gsubject to u > 0

4’../' G l'. -“ /_ 1@

where

K = (V8(x%), W(x®)) L7t 1i(vE=®), "h(x®))

,‘,,
T
» 2.

and

Tz

'y
.

ko= (VE(x®), Wm(x®)) 'Lt Lolvex®) - (B8, h(x)")’,

o lel

v
.

EE: and m' is the number of active inequality constraints, including active

?é upper- and lower-bound constraints. (The number of active inequality .
t;; constraints, m', may change from iteration to iteration.) Let p' = m' +

SE p. Then K is the p' x p' matrix defined Sy K = M'M, where

N Y P R N A e S A P T T
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M = LZl(7E(x), m(x%)).

-
A Y
W\
i& The matrix M can be computed by p' forward substitutions using the lower
-
\
( g triangular matrix L.. Once M is formed, another forward substitution
(w .
i: produces q = LZIVf(xc) so that k = M'q - (g(x%)', n(x%)")"'.
’{: A projected preconditioned conjugate gradient algorithm is employed to
L solve (8).
o
_.\
“»
' : Let (u', v®')' be the solution to (8).
v c
N [2] Solve for the step direction. Let s~ be the solution to
RS
:jj
( LLis = = (VE(x®) + vg(xS)u® + Th(xC)vl}.
-
{j (If inequality constraint gj is considered inactive, then uy is set to
J 0.) 1If QP (7) is feasible, then s® 1is its solution. If QP (7) is not
_Q: feasible, then an s® 1s obtained which is a point of minimal
;?: infeasibility. Note that only one forward substitution and one backward
[ substitution are required to solve for s.
:\: [3] Compute the step-length. Let r > max {|u2|, |v§|}
Y 1, 4
o
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N
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m
o(a) = £(x¢ + as€) + r{ T [g4(x® + as)],
i=1

+ % 'hj(xc + asc)l}.
i=1

Choose a® such that 0 < a® < 1.0 and ¢(a®) is sufficiently smaller than

#(0). Set x" = ¢ + o%sC.

[4] Check for termination. Compute the gradient of the Lagrangian

function at (x", uP, vn), VXX(xn, u®, v), and terminate successfully if

|Vx1(xn, u?, vn)l is small relative to the objective function value.

[5] Update the triangular factorization. Update L. but maintain
the sparsity structure. Use the BFGS updating procedure for the
Cholesky factor of a positive definite Hessian developed by Goldfarbd

[1976] with a modification that preserves the sparsity pattern in L..
[6] Go to [1l] for the next iteration.
The following sections of Part 1 discuss these steps in more

detail. Part II describes the {implementation of the algorithm and

provides many of the details not given here, such as what to do if no

acceptable step is possible in the direction s€.
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ek I.3 THE QUADRATIC PROBLEM
) L
SR
‘;ﬂj Transforming the general quadratic program defined in (7) into the
fk: quadratic program having only nonnegativity constraints on some of the
1
A
BN variables (8) has two advantages. First, if the number of active
-, o
Ly
;:i~ constraints in the original problem is small relative to the number of
. I:
Z:fi variables, then the transformed QP will be much smaller than the
®
;:f original and will have simple constraints. Second, solving the
o
. transformed problem with a conjugate gradient method has proved to be
e
st very efficient (see Part II). This is especially true when near a
KN solution as the initial estimate of the solution to the transformed
N
Q:{ problem will be close to the multipliers for (1) and will not change
‘\f: much from iteration to iteration. The conjugate gradient algorithm will
) .
SN therefore have to do very little work to refine the estimates on each
t}l iteration. In constrast, the solution to the general quadratic program
N (7), being the step direction, will change significantly from iteration
®
j to iteration. Hence, using the step direction from the preceding
)
"
o
\‘j iteration as the initial estimate of the solution will not improve
y 3 computational efficiency. If the original QP (7) is infeasible, the
| J
. transformed problem is still feasible but unbounded, though it can be
Lo
3; made strictly convex by a simple ad justment. Infeasibility of the
2
Y
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o
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original QP should occur only when far from a solution to (1), and it
will be shown that the step direction computed using the approximate
multipliers obtained from the adjusted version of (8) will allow the

algorithm to continue making progress.

Problem (7) could be solved using one of the pivoting algorithms
(see Dantzig [1963] and Beale [1967]). These algorithms, however, are
not particularly useful for solving large, sparse problems because they
destroy sparsity. Thus, they are not considered useful for solving (7)
in the context addressed here. They were also not considered for
solving the transformed problem (8) even though these problems should be
smaller than (7) and, possibly, denser. The reason is that the pivoting
methods cannot be used to refine an estimate of a solution that is
already close to the desired result. Pivoting methods do not start with
an estimate of the solution so, unlike the CG methods, they do nog
exhibit a decrease in computation when a good estimate of the solution

is already available.
I1.3.1 THE WOLFE DUAL

Suppose Q is a positive definite n x n matrix, A and B are,
respectively, m x n and p x n matrices, and q, a, and b are fixed
vectors of appropriate dimension. The general, strictly convex

quadratic problem has the form

.. . .
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(9) min (1/2)s'Qs + q's
" s g RY

sgbject to As < a

Bs = b.
The Wolfe dual to this problem (Wolfe [1961]) can be written

(10) max (1/2)s'Qs + q's + (As = a)'u + (Bs - b)'v

(s, u, v) ¢ RY P

subject to Qs +q+ A'u+ B'v=0

u > 0.

In the case where Q = O, problems (9) and (10) become the standard dual

" pair of linear programs.

Since Q is positive definite, the equality constraint in (10) can
be solved for s and then s can be replaced in the objective function.

Thus, letting w= (u', v')' ¢ R?+p, (10) can be written as
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(11) min (1/2)w'Kw + k'w
w ¢ REVP

subject to u > 0,

where K = VQ"lv', v = (A", B')', and k = VQ"lq + v. Here
v = (a', b')'. Note that K will be positive definite if and only if V
has full row rank, else it will be positive semi-definite. 1In the

former case the following theorem is well known.

Theorem 1: Suppose V = (A', B')' has full row rank, then both (9) and

(11) have unique solutions, say s* and w* = (u*', v*')' w* ig the

multiplier vector for (9), and
(12). s* --—Q-I[A'u* + B'v* + q].

Sometimes, however, there are enough inequality constraints so that
m+ p > n. Then V cannot have full row rank and the above result does
not apply. However, if (9) is feasible, we have the following result.

(See Wolfe [1961].)

Theorem 2: Suppose (9) is feasible. Then problem (9) has a unique

solution s* and problem (11) has a nonempty solution set W*. Moreover,

for any w* = (u*', v*')' ¢ Wk  equation (12) holds. If (9) is

et i




Rt A AR Ml ol - et BERCRA A A ‘;".',_'—." 71

A ELELA LA g Bl Al tul 9

infeasible, then problem (11) is unbounded and has no solution.

In the application of problem (9) in the algorithm given here, it
is possible that the quadratic problem may be infeasible. In this case,

. the following result will be applicable.
Consider the perturbed version of (11):

(13) min (L/2D)w'"(R + elDw + k'w
w ¢ REP

subject to u>»0

where ¢ is a small positive number. Since K + €I is a positive definite

matrix, problem (13) has a unique solution w® = (uf, v&). We denote by
(14) s€ = -Q"l[A'u® + B'vE + q].

For a given s vector we measure its infeasibility in the original

quadratic problem (9) by

e(s) = {I[As - a]+|§ + lBs - b|%}1/2.

L )

o Then e(s) = 0 if and only if s is feasible for (9). The set of least
ENg

b, infeasible points is denoted by

.

4

Y Z = {a: e(s) < e(t) for all t e R"}.




.'.
' Clearly, Z is a convex, closed, nonempty subset of R®. If (9) is

- feasible, it is exactly the feasible set.
>

N
s Theorem 3: Let {w€} be the family of solutions to (13) for positive .
:' values of &, and for each ¢ let s® be given by (14). Then

I\:
WY .
-.\-

“» A
( ' lim s€ =3

€ > ot

N

=

i

'.\ a

e where s 1s a solution of the problem

®

Y.

o

%; (15) min  (1/2)s'Qs + q's.

7 s ez

5

Eh
\

-
_-2 Pf: See Appendix B.

A

-

-
J In the algorithm presented for solving problem (1), Q is the

E: updated approximation of the Hessian matrix, which is positive

-"'

': definite. A is taken to be the gradients of the active inequality
-.\l

) constraints and B the gradients of the equality constraints at the
::::j current iterate x°. By active constraint, we include all of the *
N

"\ equality constraints and any inequality comstraints for which

L . .
L gj(xc) > -n, where n > 0 18 a prescribed tolerance. Assuming
':::' feasibility and nondegeneracy for the original problem, the quadratic
I\‘

- programs to be solved will likely have less than full row rank only when
.-::' -28-
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the approximation is far from feasibility. 1In this case, the perturbed

4, 1.1,

dual problems will be solved with small e. Theorem 3 provides

—

¥
;\: justification for this procedure in that it ensures that the solution s®
-
bx.
:.:j will be a step toward minimum infeasibility.
e
O I.3.2 THE CONJUGATE GRADIENT ALGORITHM
oo
Y
:{}
a :
( > Before considering the application of the conjugate gradient method
-:-}'. to the minimization of a quadratic function subject to nonnegativity
l‘..\
::-:3'. constraints, we should review some of its properties when applied to the
o~
;"' unconstrained minimization of a quadratic function. The conjugate
{.t: gradient method for solving
PN
S . '
-"- .- (16) min F(w) = (1/2)w'Kw + k'w
. . n
.I'-“ w e R
o
'2«-:2
rov is as follows:
)
-::‘
}_..: [0] Starting at any w° ¢ R® set % = 0, and define
'.:.'. )
ol p° = -JF(w°) = -Kw® - k.
o
‘-,'.:
'l
:;. [1] Set witl 2 g2y alp"',
N
o v ot
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2] 1If VF(w£+1) = 0, set wk = wtl and terminate with w* as the

solution to (16). Otherwise, go to [3].

[3] set p**l = -vr(witl) + g, pt,

VF(wl+1)' K pl

pl, K pl

where 31 =
[4] Set 2= 2+ 1. Go to [1].

In exact arithmetic, the algorithm terminates in at most n iterations
for positive definite K. The conjugate gradient algorithm converges

monotonically to w* in that if we define
E(w) = (w = w*)' K (w - w*)
then it is easy to show that

.2
BTy = Bl - [Wg"% i] > ECel).
P'Kp

Thus, in the metric defined by the positive definite matrix K, the
conjugate gradient estimates get closer to the solution on each

iteration. Likewise, it is easy to show that

2,2
Pty - pety = - LIE@HRN?
2 pl' K pl
=30-
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showing that the objective function is decreased on each iteration. It
should be noted that solving (16) for positive definite K 1s equivalent

to solving Kw + k = 0 for w.

If we let rt = Kwl + q, we can think of the CG algorithm as either
trying to find a zero of the gradient or trying to make the residual
associated with the linear equation, r, equal to zero. Unlike most
methods for solving linear systems of equations, the CG method does not

alter the matrix K and involves only matrix-vector multiplications.

The finite termination property and the monotone decrease in the

distance between wl

and w* as defined by the matrix norm are also
achieved by a modification to the conjugate gradient algorithm (see
Polyak [1969]) which minimizes a quadratic function subject to

nonnegativity constraints on the variables.
Let y = Kw + k. Then w* solves (16) if and only if
(17) y; >01if w; =0 and
(18) y; = 04f w) > 0.
These are the Kuhn-Tucker conditions for the solution to (16). Another

way of stating these conditions 1s to say that w* solves (16) if and

only 1f

-31-




(19) w*'y* = 0 (complementarity condition) and

(20) w*, y* > 0 (nonnegativity condition).

Polyak's algorithm, which is the basis of the algorithm developed by
O'Leary [198l], maintains nonnegativity of the vector iterates wl while
iterating toward satisfying the remaining conditions in (19) and (20).
Polyak's algorithm terminates in a finite number of iterations (0'Leary

[1981]).
I.3.3 A PROJECTED PRECONDITIONED CONJUGATE GRADIENT (PPCG) ALGORITHM

O'Leary [1981] describes a modification to Polyak'é algorithm that
preconditions the CG step to improve ;he convergence rate of the
algorithﬁ. She also proves that her algorithm converges in a finite
number of iterations. O'Leary's algorithm has been modified for the
work described in this application. The standard CG step is projected
onto the feasible region as opposed to O'Leary's method of truncating
the step at the boundary of the feasible region. Taking projected steps
has the advantage of aliowing more than a single variable to become

inactive on an iteration, while truncation will permit only one variable

to become inactive on a single iteration.
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A preconditioned conjugate gradient algorithm for (11) uses
M lyF(w?) rather than VF(w?) to define pJH'1 in step [3] of the CG
algorithm, where Ml is some approximation to K~l. oOne obvious choice
for M} is the inverse of the diagonal of K. Another choice, and the
one actually employed here, i1s one pass of the symmetric successive
over-relaxation (SSOR) method as apﬁlied to the system of equations
defined by Kw + k = 0. The following is a description of the PPCG

algorithm.

In our description of the PPCG algorithm, N will be the set of
indices of components of w that are constrained to be nonnegative and N
will be the set of remaining indices. A vector w will be a feasible
solution to the quadratic program if wy > 0 for 1 € N. At any given
time, a variable will be considered active or inactivé. Only
constrained variables can be inactive. An inactive variable will always
be at its bound, i.e., equal to zero. A variable, however, may be at

its bound but not considered inactive.

The PPCG Algorithm

(0] (Initialization) Choose w° such that w{ > O for i € N and

set 2 = 0. Set I = N.

o

ST S N




st
.

~ {1] (Outer iteration) Set £ = £ + 1, yt = Kl + k, and I, , = I.
b\ :: *
(:‘ Define I, = {1 e N: wf = 0 and yy > 0}, 1If Ip= I and Iyil < e for
‘f; 1 £ 1y, then terminate; otherwise, set I = I,. (Note: ¢ is the

{\‘ -

't{ tolerance on the norm of the residuals for termination.)

N,

.

- - .
A .
:n; ' [2] (Inner iteration) The inner iteration only manipulates active
5‘_ variables. During the inner iteration, variables that are active may

become inactive, but no inactive variables become active. Inactive
N ) variables can become active only during execution of step [l]. Let J be
. the set of indices of active variables, then any variable index belongs

either to I or J. The matrix system is partitioned as follows:

. Lot B B
N 7l
P R

o o fa b e et

LIy
b
€
o H

|
I Y1 X1

( ] 1 Ky %51 ®5g

€
¥

. %.-‘ >
'l

.
l.l.
s "t
KA

Initialize to solve the equation

Py
Y -

A

2 A0 i

[ R R A

o R
1@y o

P

Set 2% = w} and r® = —k; - Ky wf - Ky; 2°. Go to step [4].

..'.'..
el

[3] (Restart inner iteration) If a projected step was taken, the .

L
-

variables that have been set to their bounds must be checked to see

N &2
'l' o .'A.

whether they should become inactive variables. Also, the residual
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vector must be recomputed since the CG formula for updating the residual

is not valid for a projected step. Set z% = w} and

e = -k.J - K1 w{ - KJJ z®. For each 1 ¢ J N N do the following:
if zg = 0 and rg < 0, then add 1 to I. Repartition as necessary. If
there are no active variables, then restart the outer iteration (go to

-

(. :

[4] (Calculate new iterate and residual) Set

Set z1 = 20 + acg r%. For each i € JN N, do the following: set

z} = [z}_]+ and set a projection flag if this 1s.a projected step.
(Note: O'Leary's algorithm allows only one variable per iteration to
become inactive, whereas this ome may set more than one to the inactive

state on a single iteration.)

If this is a projected step, set w} = z! and go to [3]. Otherwise,

1 o _ o
set r’  =r acq KJJ T .

[5] 1f rl < g, set wi = zl and restart the outer iteration (go
. '3 g

to (1]).

\ I S gl J=

i



SR Sl A e SR P PR AN N aMetad,

P S A M S NS CACAEREA UL OLSEOE AN A S U MEAC SR AL ACIAL AT AL U A s A AT e e i b A aie® ae ey

(6] (Initialize preconditioned iteration) Choose M as a

preconditioning matrix for K;;, set q = 1, and let p' = Mler,

[7] (Calculate new iterate and residual) Set .

q+l

297 = 2% + agg pt

For each 1 € J NN, do the following: set zg+1 - [z§+1]+ and set the

projection flag if this is a projection step. If this is a projected

step, set w} = z29*! and go to [3]. Otherwise, set
+

[8) 1f I A | < g, set w} = z9*! and restart the outer

p o

Y iteration (go to [1]).

i:'_-::: .
Y

Nd

5 8

W [9] (Calculate new search direction) Set ‘




=N

N

'.;f—i

N - -

\f' pql KJJ M 1 rq+1 r(q+1)| M 1 rq+1
1§ % "%, T a1 a
_ P Kyyp r'Mor

‘5

'

N = w-l.aq+l q

{ g Pg=M'r + bqp

- q-q+1.

S

>

g

Go to [7] for the next preconditioned step.

Cal
X2
.. O'Leary's algorithm does not take projected steps; instead, a step
B
.”{ is truncated at the first boundary it encounters. If M is set to the
_{? identity in O'Leary's algorithm, then the algorithm is identical to
~
¢ .. . .
(% Polyak's. As long as the preconditioning matrix, M, is positive
:j; definite, O'Leary's algorithm converges after a finite number of
'jf iterations. The projected version of this algorithm has performed well
o
) on the problems used for testing the algorithm developed in this paper;
‘*J: however, a thorough investigation of its properties remains to be done.
13
e
’..o
5 Possible choices for M include the diagonal of KJJ. M is clearly
3 positive definite in this case if K 1s positive definite, so for
O
Wy O'Leary's algorithm the finite convergence property will hold. Another
:} choice, which O'Leary investigated, is to define M-lr as follows. Let
I
.':-.
BAS - -
o Mlr =z -2t
o.
::c' - 3 7-
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where z is the vector obtained by applying one iteration of the
symmetric successive over-relaxation (SSOR) algorithm to system (21)

with zi

as the current estimate of wy. 1In O'Leary's version of this
application of the SSOR method, variables are truncated during the
forward and backward passes. The M corresponding to this process is not
necessarily positive definite, so“the éroperties of the algorithm are
unknown. However, O'Leary reported good results with this
preconditioning method. For the projected algorithm described here, the
variables are not truncated during the forward and backward passes of
the SSOR method. Consequently, the preconditioning matrix M defined by
this process is positive definite (see Hageman and Young [1981}) and

should make the investigation of the properties of the projected CG

algorithm easier. The following is a description of the forward and

backward passes of one iteration of the SSOR .method.




SSOR Algorithm

S

5

[1] Let FJ = kJ - KJI"’I'

P
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(2] For j=1, 2, ..., s, where s is the order of K;j, set

by —
-

3y

820

-1

]
-f i -f i
iy z. mz. +w(F,- £ K, z.,- T K,,z,)/K..,
{
N and w £ (1, 2) is the relaxation parameter.
U4
\P
o
>
\:.
) [3] For j=s8, 8=-1, ¢e., 1 let
-
.
j s
-~ - -f -f -
) z, =z, 4+ F,- T K;,, 2z, - Z K,,z.,)J/K .
o T R R T R R T LT
{ .
:_'.‘_': The SSOR method can be used to solve systems of equations defined by a
:::: positive definite matrix. As a preconditioning step for a CG algorithm,
. a single SSOR iteration should provide a refined estimate for the next
f, step direction.
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1.4 MERIT FUNCTION FOR STEP-LENGTH CONTROL

We use Han's merit function for step—length control. Suppose the
current iterate is x® and the step vector is s©, then let
¢(a) = pr(xc + as®), where pr(.) is given by (4) and «, O { a <1, is
the step-length parameter. We set x® = x¢ + o3€ 1if
o(a) < $(0) + o ad'(0), where 0 < g < 1. The derivative, ¢'(0), is the

right-hand derivative of ¢ at 0 and is computed as follows.
‘Define
0: gj(xc) < 0 or [gj(xc) =0

Gj = and ng(xc)'sc < 0]

ng(xc)'sc: otherwise

for inequality constraints, and

<, ¥ P P Pl Y d' o "o ¥ !',n’

"—, ML .« --f "'-'."." W ls r-. VSN o, "4" - rﬁim
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- th(xc)'scz hk(xc) <0,
Hk = th(xc)'sc: hk(xc) > 0,

| Ty (x©) '] : m (x®) = O,

for equality constraints. Then ¢'(0) is given by
(22) ¢'(0) = vE(x®)'s +r { £ G, + £ nk} .
where r is larger than the absolute value of any of the multipliers.

The choice of ¢ determines the strictness of the test. .Normally, g
is set to 0.1. Note that in general, ¢(.) 18 a continuous, but not
necessarily smooth, functioh of a. It is still the case, however, that
for some a ¢ (0, &) with 0 < ¢ < 1 the test can be passed if s is

really a descent direction for p(.).

Han's [1977] algorithm differs from the one developed here in that

the new iterate, xk+1, is given by
xk+1 = xk + aksk

for any ak in [0, ] satisfying #

pr(xk+1) < min pr(xk + ask) + ek
0<Cac<i

-41- )
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s with {e"} a sequence of numbers satisfying

13

(s

!-.~ ‘. @

o T <

"y k=0

{\;

(i) and { is some positive number. Han shows that his algorithm, with a '

-~ .

SRS

‘:L: proper choice of r for the merit function (4), is globally convergent
3K

. .

:3} under the following conditions:
t

e

:fji ¢ £, g4» 3 = 1, ..., m, are continuously differentiable;

T

B (1i1) f is strictly convex and bounded below;

P

§[1 (iii) the constraint functions are convex;

s,

:ﬁf (iv) the set X = {x: g(x) < 0} is compact and

e

ol S X% = {x: g(x) <O} # P ;
( (v) there exist positive numbers A1 and A, such that for each k
o ' '

o and for any x € R%,

-:...:_

.:_-.:,_n

Jl\.'n
7 A x'x € x"QEx € Ay X'x,
‘.','::f:'.'
-\‘-". '

:::: This result can be extended to include equality constraints. In the
oA )

;_— same paper, Han proves a weaker global convergence property requiring
S
$};: only conditions (1) and (v) and that each quadratic program generated by *
:\"-.

}:ﬁ_ the algorithm have a Kuhn-Tucker point with a Lagrange multiplier vector

bounded by r in =—norm. Note that these global convergence results
require only that the Hessian approximation matrices, Qg, be positive

definite, with their eigenvalues bounded above and below. The step-
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length control parameter used in the algorithm developed here uses the

same merit function as Han, but we do not require the nearly exact
minimization over o as Han does. Instead, we require the step to
achieve a rate of descent compatible with the local behavior of the
problem functions. This approach is similar to the Goldstein-Armi jo
principle (see Fletcher [1980]) and has performed well in testing (see

Part 1I) .
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{};g I.5 SPARSE UPDATING PROCEDURE
) ]
AR
’iti
SRy Variable metric algorithms for unconstrained minimization update "
("\ approximations to the Hessian in such a way that the quasi-Newton
ij: condition is satisfied. Let f be the objective function of an
‘ »
o)
1 .
,iﬁ unconstrained minimization problem and let Q, be the updated
oo
'. approximation to the Hessian. Then the updating procedure used to
i:; obtain Q, satisfies the quasi-Newton condition if
s
v
._"'.:-'
(¢ Q(x" - x%) = vE(x™) - VE(x®).
)
L8
iﬂj Updates satisfying the quasi-Newton condition, such as the BFGS update,
v ™ .
R
) have many desirable properties, including superlinear convergence (see
:{?: Fletcher [1980]). 1If the Hessian of f is sparse, it is advantageous if
.:.‘ I'
::J the updating procedure maintains the sparsity pattern. Shanno [1980]
a._-ﬁ
° has shown, however, that it is not, in general, possible to have an
L
0 updating scheme that satisfies the quasi-Newton condition, maintains a .
B

given sparsity pattern, and preserves positive definiteness.
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The same problem arises for the constrained problem where the

quasi-Newton condition is

)
PR

00— i

.

s

o (23)  Q(x" - x) = T (x", u?, v?) - 7 0xC, W, V).

5N

@]

)

i;) As discussed earlier, the solution of the quadratic subproblems requires
S

that the updating scheme be positive definite. Moreover, for solving

By

DO
PR W Sy A

2
0

{ large problems, maintaining the sparsity pattern of the Lagrangian

z;ﬁ; Hessian is essential. Therefore, the requirement that the update

o

_:? satisfy (23) has been dropped in favor of maintaining the sparsity

;_~ pattern. The update is forced to have the desired sparsity pattern by
‘§§? "zeroing out” the appropriate elements in the lower triangular factor of
'§£; the update. The effect of this decision on the lgcal convergence rate

is unknown even 1nAthe'unconstrained case. Test results, however, have

.
’
.

v%}: been encouraging. Thapa [1983] reports favorable results for this type

i;; of procedure applied to the BFGS update for unconstrained optimization

':;. as long as the updated factor remains positive definite.

ig? Since the algorithm developed here maintains a sparse lower

;i- triangular approximation to the Cholesky factor of the Hessian, a

2;2 procedure for updating the lower triangular approximation is used. The

v%:; procedure 1s a modification of Goldfarb's [1976] BFGS procedure for

i‘: updating the Cholesky factor of a positive definite Hessian
approximation. The procedure is simple to implement. Other methods for

. updating a sparse Hessian approximation have been developed by

e

<
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Shanno [1980] and Toint [1977]. These methods were not used because of Y
their complexity and because they are not directly applicable to

updating a lower triangular factor.

Goldfarb Updating Procedure

Let s = x™ - x® and let L, be the current approximation to the

lower triangular factor of the Hessian of the Lagrangian, i.e., let ,

Q. = L.L.'. The BFGS update for Q. is given by [

nn,
Q.s s Qc

- ' o_
Q= Q * n, n,, n °’
sy s ch.

where y = 7, 2(x", u", v = Vea(x®, u, v?). Let p = s and

q= y/[(s“'y)(sn'chn)]llz - Q.s"/s"1q,s™.

- o

Define z and w by L.z = q and w = L.'p. Then

Q, = (I + qp")L.L.'(I + pq") S

= LC(I + zw')(1 + wz')Lc'.

[

We wish to find L such that (I + zw') = LQ', with ; lower triangular

I\'A.'l‘.l .L 55."-&- -*- '4."":"{."" !
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and Q orthogonal. Then

Qp, = L.L Q'QL'L," = L,L(L.L)'

so that L, = L.L 1is the new approximation to the Cholesky factorization
of the Lagrangian. L, will not necessarily have the same sparsity

structure as L,; however, it is simple to ignore fill-in in L,. 1If

o)
w'z = -1 so that I + zw' is singular, then we cannot update. However,
w'z = =1 occurs only if s'y = 0. If s'y < O, a modification suggested
by Powell [1978] is used that maintains the positive definiteness of the

update (see Part II).
The L sought is given by

pys 1 =3
Lij = ij1+‘yj Zi:i>j

0: otherwise

for i, j =1, ..., n. The following two recurrences generate the

vectors B8, y, pP.
Recurrence 1l:
l. Set B, = 1/w,.

2. For j = n-1, n=-2, ..., 1 set
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. Recurrence 2: t
1 :
. }
)

l. Setyy = 1/B, pp =B v+ 27

:- .‘

R
: 2. For =1, 2, ..., n-1 set ¢
} L)
‘ 2 2,1/2 '
&% py = (By" + 84 }
1 |
v - - L
{ "-j = Pj/PJ ’ i

g I 1
. ) ) v
" By = €3 By~ 5 B 3
: .
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Bie1 = 85 By + ey By

Birn = By Wil ¥ Yan 230

R

&

3. Set pn‘ano

[y .
] " s
v 5 a4 8 & 8

~

ﬂh' Since L, = LcL, the j=th column of L, is given by

’A

. | | L) T L)
L) = ¥ L L
n’.j kmj Jk'* e’k

155 e
555

n
mp, (L) 4 £ (Bswp + s Z)(L) vy §=1, euu, ne
J Yrel.d k=41 3 %k j “rk/\he’ .k

. AR 1 O
‘-;.}‘.‘:c)‘v.' . )

Thus, L. can be updated without explicitly forming L. Only the vectors

P, B, Y, W, z need be stored. Any fill-in is ignored.
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IMPLEMENTATION AND TEST RESULTS
A

PART II.
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CREN
N II.1 INTRODUCTION

)

S
o
ALY
::2 This part describes the computer implementation of the algorithm

L :

{--; and gives the results obtained by applying the algorithm to several test
j:ﬁ problems. An assessment of the capabilities of the algorithm based on
< o
Tl the test results is also given.

o
()

T
::f. The computer implementation of the algorithm is referred to,as
o :

;::. OPCON. The discussion here focuses on those issues that are of
~

f, _ .

{ i particular importance in implementing the algorithm on a computer.

Pt
a

{:§ The notation used in this part will be the same as in Part I, with
> B
) the exception that references to equations in Part I will be preceded by
::i "1," e.g., (1.16) will refer to equation 16 in Part I.
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II.2 PRELIMINARIES

Before discussing the computer implementation, it would be helpful
to describe how the implementation handles function evaluation, gradient

storage, and gradient estimation.

I1.2.1 FUNCTION EVALUATION SUBROUTINE .

The user must supply a subroutine that computes the value of the

2 BT

objective function and all of the nonlinear comstraint functions at a
point passed to the subroutine. Linear constraints are handled by
providing the coefficients as part of the gradient data. Each call to

the function evaluation routine results in the evaluation of the

- g

objective function and all of the nonlinear constraints.

A smoother versioh of the OPCON algorithm would allow a separate
call to evaluate the objective function and another call to evaluate the Y

nonlinear constraints. This feature would be useful in problems having

.

all variables represented in the objective but having sparse constraint .
functions. The sparse finite differencing gradient procedures of

Coleman and More [1982], discussed in the following section, would

ERBBRY

e .- . . . . P . . . K
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provide more savings because the method could be applied to just the set

of constraint functions. A single non-sparse function in the set of
functions handled by the Coleman and More method will result in no
savings in function evaluations. For example, if two functions of
variables of length two have gradients that are structurally zero in
opposite components, then one call to a function evaluation routine for
both functions is enough to obtain forward difference estimates for the
two nonzero components. If one of the functions has all nonzero
gradient elements, then two calls will be required. The Coleman and
More procedure exploits these relationships. If one function in a set
is not sparse, then the number of calls to the function evaluation

subroutine will be nearly the number of variables.
11.2.2 FINITE DIFFERENCING AND SPARSE GRADIENTS

The nonzero gradient elements for all nonlinear functions are
estimated from either forward or central differencing. Since all
functions are evaluated by each call to the function evaluation
subroutine, it is worthwhile to reduce the number of calls of the
subroutine required to estimate all nonzero gradient elements. If the
gradients of the nonlinear functions were not sparse, then n calls of
the function evaluation subroutine would be required, where n is the
number of variables in the problem. If, however, the gradients are

sparse, it 1s possible to significantly reduce the number of calls as

-53=-
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Coleman and More [1982] have shown. Their algorithm has been employed

g

in the development of OPCON.

N ] >
l»—v«-‘r

Pl

o
«:}: A single value for the finite differencing interval that is used
\_; for all variables is input to the algorithm. However, each restart of -
o
:;:j the algorithm (restarts occur after failures to take a step) causes a
Ry

‘ﬁj finite difference interval to be computed for each variable. This is ;
&'- accomplished by a call for each variable to the subroutine, FDCALC,

;FL developed by Gill, Murray, Saunders, and Wright [1981] for determining

)

w .

:s& good finite differencing intervals. Their procedure balances truncation
L.

® error against the noise induced by machine evaluation of the function.
'.'. .

;f: Since the step direction chosen at each iteration is the solution to a
.'."?

ﬂj; system of equations having an estimate of the Lagrangian gradient as the
N :
{ right-hand-side, choosing the finite difference interval for each

:iz variable to make the finite difference estimate of the Lagrangian
ﬂ?ﬁ gradient reasonably accurate is appropriate. Thus, the Lagrangian

.x‘:-,
W) function using the current estimate of the multiplier vector is the

A, e

) function passed to these subroutines. This 1is an appropriate choice

>fo
N
:fb since it is the estimated gradient of the Lagrangian which is used to
‘* determine the step direction.
o )
LN
T As mentioned previously, it is important to reduce the number of
6‘ calls to the function evaluation subroutine in obtaining the finite )
:Sj difference estimates for the sparse gradients. The sparse gradient
'.'.:.r

?:j structure of the objective function and nonlinear comstraint functions
7
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oY
:ﬁf 1s processed to obtain n, groups of variables, such that the variables
ivﬂ in each group can be varied together to compute some of the finite
¥
- difference elements of the Jacobian matrix corresponding to the
E:: gradients of these functions. Ounly ng calls to the function evaluation
RS
- . subroutine are required to compute all the structurally nonzero entries
.. in the forward difference estimate of the sparse Jacobian matrix. If ng
I is significantly smaller than n, then there is a considerable savings in
if} the number of computations required to compute the estimate. Since
;\: central differencing is used whenever there is an indication that
- ]
l:: forward differencing may not be sufficiently accurate, the savings can
N
; be even more pronounced. (See Gill, Murray, Saunders, and Wright
4? [1981], Stewart [1967], and section II.3.3 for further discussion of
o .
:- when to switch to central differencing.)
) .::
{ |
N Linear coustraints are handled separately from nonlinear
.':_
'32 constraints. The coefficients are stored in a sparse format and used to
.':\
- compute function values or gradients as needed. These arrays are passed
\—-)
T to OPCON. Each linear or nonlinear constraint is set to be either an
2
f} inequality (<) or equality constraint. The user also sets the right-
;; hand-side (RHS) value of each constraint. An initial estimate of the
o
;E solution and upper and lower bounds on the variables are also passed to
oD
‘
- OPCON.
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e II.3 TIMPLEMENTATION OF THE ALGORITHM

I\
: I.3.1 AN OVERVIEW :

The following paragraphs describe in detail each of the steps

. performed by OPCON in roughly the order in which they occur. A brief
‘ l overview of the algorithm is given first.
o

ALY

Y

[had s

{0] 1Initialize. Initialize data structures and compute function

»

values .and finite difference estimates at the initial estimate of the

R

\.‘
“

solution.

> /‘o
S fad Lt

% . &

[1] Start or Restart. Set the approximation to the Cholesky

4

factor of the permuted Hesslan of the Lagrangian to the identity. Set

5
-
a

%5
7

v/
P2

the multiplier estimates to zero. If it is a restart, then compute a

°);

finite difference interval for each variable using the procedure given

..".“{\
1

SIE AP PR

by Gill, Murray, Saunders, and Wright [1981]. -

|
e W
Lol Wy

h NSNS

W

(2] Form the Dual QP. Form the dual to the quadratic program (QP) N

@

)

solved on each iteration of the SQP method. In forming the dual QP,

oA

0

consider only those inequality counstraints that are active.
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[3] Solve the Dual QP Using a CG Method. Solve for the
multipliers of the original QP by solving the dual QP that has only
nonnegativity constraints on some of the variables using a projected
preconditioned conjugate gradient (PPCG) method. If unable to converge,

then restart.

[4] Compute the Step Direction. Let gy be the gradient of the

Lagrangian function at the current estimate of the solution for the
primal variables and the multipliers from the QP obtained in step [3].
Then the step direction, sc, is the solution of Lch's = =8¢ where Lc
is the current estimate of the Cholesky factor of the Hessian of the

Lagrangian.

" [5] Compute the Step Length. Find an acceptable step as®. The

criterion for an acceptable step is a suitable reduction in the merit
function of Han (see equation I.6) based on a local linear model of the
problem. Set the new estimate of the solution, x®, to x¢ + as®. If

unable to find an acceptable step, then restart.

[6] Check for Termination. Compute new estimates of the gradients

of the objective and nonlinear constraint functions. Check for

termination. Successful termination occurs if the norm of the

Lagrangian gradient 1is small.
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;i; [7] Update the Cholesky Factorization. Update the approximation
3? to the Cholesky factor of the Hessian of the Lagrangian using the BFGS
i 4
S;. formula as given by Goldfarb [{1976] but ignore any change to structural
..-.

i: zeros in L. If the update is unacceptable, then restart. Otherwise,
I.~

i‘ begin a new iteration by going to step (2].

L

.iﬁ The following sections discuss the actual implementation of these
o~

- steps in detail.
{

a

N I1.3.2 INITIALIZATION

f:

“ A

L

O The initialization section of the code reads in the data file

;ﬁ defining the problem and establishes the sparse storage structures for
j:: the Hessian factorization and the gradients. The maximum number of
sd' active constraints is computed based on the number of variables in the
2; problem and the amount of storage allocated to the array that will be
:‘; used to store data defining the dual quadratic program. This array is
J

-5 dimensioned to be very large, but it is used for storing other data

»

:; during different steps of the algorithm.

<

\"

®

o The objective and constraint functions are evaluated at the initial
- .‘J -
{f point. The degree of infeasibility is computed using the following

e formula: )
s

o

‘-._'

'\.-_:

e
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N
N
A m c m+p c
% (1) FEAS = I [gy(x") - RHS,] + = Ihk(x ) = RHS,
o j=1 ~ k=m+1
(+ ;
A p 1 c c u
i + ¢ max (0.0, x, - X, , X, -x,) ,
oY i i i i
.-\" 1-1
«"\.'
-
l\‘i
) “ where the first m constraints are inequality constraints and the last
e )
‘:.:-} m+l, ..., mtp constraints are equality constraints. The upper and lower
\"_':
'\": bounds on the i-th variable are given by x;‘ and xi, respectively. For
S5 :
({ i i=1i, ..., mp, RHSj specifies the right-hand-side value for
™
-:.::j constraint j.
2
;' The initial finite difference interval is set to an input value and
s:.e is used for all variables. Forward differencing is used initially.
; -J.
.l -‘:
’J‘
) . ) . )
{ II.3.3 FIRST ITERATION AND ALL RESTARTS
‘.“\
oy
_f _‘_'.::: First Iteration
-2
o On the first iteration and on all restarts, the Cholesky factor is
o
’E-'.:-,' set to the identity and all multiplier estimates are set to zero. The
I
'i'-‘ value of MAXLAM, which is used as an upper bound on the largest
oyt
f:'-:.: multiplier in absolute value, is also set to zero.
:\.:\
2
-.:_\
-0
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A
\.:,‘4
:ﬁl: Restart
N -
{r
§$: On each restart the actions described in the preceding section are
‘-"-
ALY
qﬁ: repeated and in addition the following actions are taken. The finite
-".1
) difference interval for each variable is recomputed using the method of
20
}:3: Gill, Murray, Saunders, and Wright [1981] that optimizes the interval
h‘\q:-
iﬁk for each variable in order to make the finite difference estimates of
a7
{ the gradients as accurate as possible. The method also computes central
5?5 differencing intervals. The function used is the Lagrangian function.
‘/_:.-
:2} (During a restart, the multipliers are not reset to zero until the
AN
® finite difference intervals are recomputed.) The method of Gill,
oy
oy .
:ﬁ: Murray, Saunders, and Wright is available as a subroutine called FDCALC.
\'l “
bt '
.Y
N
(~ ' Central differencing is used if FDCALC detects an error condition
‘Agf or if the following inequality is satisfied for any variable:
v ‘:
’ g < 10® &, h
)] i i1 "i»
B~
qﬁ%ti
i ::‘--

L4

where m is 5 for this implementation. This test is described in Stewart

vy
A

[ ] [1967]. D4 i3 an approximation to the i-th diagonal element of the
.
e
.3' Hessian of the function computed by FDCALC, hi is the optimum forward
4 :'J‘"
’ﬁf: differencing interval computed for the i-th variable, and §; is an
RAS
'Y estimate of the i-th component of the gradient also computed by
;E? FDCALC. 1If a gradient estimate for a variable is small relative to the
')2:'3
e
'
‘v
’ﬂ 'l
3 "b -60-
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Hessian estimate, then central differencing should be used because the

forward difference estimate is unlikely to be very accurate.
II.3.4 FORM THE DUAL QP

Recall from Part I that the step direction computed at each

[

iteration, s~, is the solution to the following quadratic program:

min VE(xS)'s + (1/2)s'Lch's
s

subject to ng(xc)'s + gj(xc) < 0.0, j=1, ..., m,
" (x®)'s + h (x°) = 0.0, k=wtl, ..., wHp,

xi < xg + 84 < xg, i=1, .e¢, n,

where Lc is the current approximation to the Cholesky factor of the

e
Ao

%

Hessian Lagrangian. By transforming to a dual problem a much simpler

v
LA A
P d

quadratic program can be solved. In order to make the dimension of the

1§
te
%

dual problem as small as possible, only active or nearly active

iye

constraints are considered. Equality constraints are always included.

| N

v "?‘:‘i“i“b .
)

Any upper- or lower- bound constraint on a variable, Xy, will be

included i1f the constraint is violated or if the current value of the

oA

._.,1.

RS
af

o

variable is within BNDV*(xg - x%) units of either the upper or lower

v

o

T

bound. BNDV is an input parameter and is typically 5x10“. An

v

L
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inequality constraint is considered active if the constraint is violated
or 1f it is within ACTV units of being violated, where ACTV is another
input parameter and is chosen to fit the scaling of the problem. It is
important to properly scale the constraints since this criterion is

applied to all the inequality constraints.
The dual quadratic program (see section I.3.1l) is

(2) min (1/2)u'M'Mu + u'q
u

subject to uy > 0.0,

where the i-th column of M corresponds to an inequality copstraint. Let
the active constraints és defined in the previous section be numbered
from 1 to p', including any active upper- or lower- bound constraints.
Then the j-th column of M is the solution, y, to L.y = ng(xc), where 83
can be either an equality or inequality constraint. This is a sparse
triangular system of equations that is easily solved using a sparse
forward substitution method. Vector q is given by q = M't - g(x®) + RHS

where t is the solution to L.t = V£(x®) and g is the vector of

" “.-V.\\ )
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active constraints. Again, a sparse triangular system is solved to

obtain the vector.

As long as M has full column rank, which will be the case as long
as the gradients of the active constraints are linearly independent and
L. is nonsingular, M'M, the matrix defining the dual quadratic program,
will be positive definite and a solution to (2) will exist. If the
gradients of the active constraints are not linearly independent, which
will be the case if there are more active constraints than variables in
the nonlinear program, then (2) cannot be solved with the CG method
described in the next section. The algorithm recognizes when there are
more constraints than variables and takes the following action. A value
of ¢ 1s added to each of the diagonal elements of M'M, where ¢ is a
small,(lo-s) positive number input to OPCON. This is a perturbation to
the original problem, which ailows the algorithm to continue making
progress when far from a solution (see section I.3.1). It is expected
that the number of active constraints near the solution will be equal to

or less than the number of variables.
I1.3.5 SOLVE THE DUAL QP USING THE PPCG METHOD

The basic method for finding the solution to the dual QP using a
projected preconditioned conjugate gradient (PPCG) method is given in
section I.3.3. The computer implementation follows the steps given in

the description, with a few exceptions.

-f3=

L A S I
.v..P ..Pd'l-’,...',‘_.:.: 2N




The discussion here refers to the following quadratic program:

E:.x (3) wmin (1/2)u'Ku + k'u
T u

() subject to u; > 0.0 for i ¢ IINEQ

~ : . where IINEQ is the set of indices corresponding to the inequality
constraints considered active in (I.l) and K = MM or K = M'M + ¢I and

k = q.

The exceptions include using an error tolerance to determine
ﬁhether the system is ill-conditioned or nearly Qingular, passing
DN through the a}gorithm the first time using a weak optimality criterion
followed by a restart with the required criterion on the norm of the

residual, and scaling the K matrix to speed convergence.

R Checking for Ill-Conditioning in K

|
NG #y
SIS ol

The value of uJ'KJJuJ 1s computed during each conjugate gradient

iteration where the subscript, J, refers to restricting attertion to a

"'!..n' .
Pd

subset of the variables in (3). If uJ'KJJuJ/uJ'uJ is small, then K is

7
P A A
I ANIVA

nearly singular or ill-conditioned. If this condition is detected, a

e
WA

flag is set and an attempt is made to solve the perturbed problem to be

&
'

described shortly.

@r.iss
e
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Scaling the Dual QP Matrix

Before the PPCG algorithm is initiated, the matrix K is scaled as
Kgcar = SKS, where S 1s a diagonal matrix with S;; = (|K.1|2)-1/2. The

problem actually solved is

min  (1/2) v'KggaVv + v'Sd
. ‘

subject to vy ? 0.0.for i- ¢ IINEQ‘

The solution, u*, is given by u* = Sv* 6 where v* is the solution to the
scaled problem. Tests on the residual norm are always made relative to
the unscaled problem to ensure that the error tolerance is satisfied for
the desired problem. The initial estimate of the solution to the scaled
o s-l

problem is set to v u®, where u® is the last estimate of the

multiplier vector corresponding to the currently active constraints.

Perturbing the Dual QP

If the algorithm is unable to converge after an input number of
iterations or if K appears to be singular or ill-conditioned, a small
value, ¢, is added to each of the diagonal elements of Kgcpr and the
algorithm is restarted with the multipliers reinitialized to the zero
vector. The small value added is an input parameter and is usually on

the order of 107, This procedure has an effect similar to that

-65=




wad discussed in the steps taken to form the dual QP when there are more

(i active constraints than variables.

2

I~ If the CG algorithm fails to converge, OPCON will restart.
N 11.3.6 COMPUTE THE STEP DIRECTION

{ After computing the new estimate of the multipliers the new step

[

S direction, s-, is obtained as the solution to the equation:

- m mtp n

o LL.'s= -{Vf(xc) + I u;Vg (x$) + T wWh(x°) + T % we,} .
- cHe 3'8]3 k' . 151
R =1 k=1 i=1

\‘:: Any multipliers associated with inequality constraints considered to be

inactive are set to zero. The multipliers for an active upper- or

lower-bound constraint on the variable Xy, Wy, Will be positive if the

» *
&S

.
“

R -
-{.

\éﬁ}

upper bound is active and negative if the lower bound is active. This

Y

&
- %
.

sparse set of equations is solved using the sparse code of George and

&
WX -

L‘—'Lss

Liu [1981].
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IT1.3.6 COMPUTE THE STEP LENGTH

OPCON will not accept a step unless the step results in a
sufficient decrease in the Han merit function (see section I.4). Let
FEASO be the sum of infeasibilities as given by (1) at the current
estimate of the solution, x. The current value of the merit function

is then

PHIO = £(x®) + MAXLAM + FEASO ,
where MAXLAM is an upper bound on the maximum of the absolute values of
the multipliers. For 0 < a < 1, evaluate (1) at x® + as® and define the
value as FEASN. The step, as®, will be accepted if

PHIN = £f(x® + as®) + MAXLAM ¢ FEASN < PHIO + oa ¢ PHISLP.
The test is made less strict by setting 0.01 { o < 0.5. The slope of

the merit function is approximated by PHISLP, which is computed as

follows:

m c m+p n
PHISLP = £(x)'s® + MAXLAM { £ G (x") + I H (x")+ I

s,} ,
=1 3 ] =1 1

where for inequality constraints (see section I.4)
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0: g4(x®)<RHS; or [g4(x®)=RHS; and Vg4(x%)'s® < 0.0]
Gj(xc) = '

ng(xc)'scz otherwise
for equality constraints

-th(xc)'scz hk(xc)<RHSk
B (x%) = { " (x%)'s®: hy (x)>RES,

| Ty (x%)'s€| s hy (x®)=RHS,
and for upper- and lower—bound constraints
s{: x{ > x{ or [x{ = x{ and s§ > 0.0]
-sS: x§ < x! or [x$ = x! and s§ < 0.0]
i~ ™ i i i i el

The first trial value of a is 1 . If this is not an acceptable
step, then g is reduced by a constant factor less than one. This
procedure is repeated until an acceptable step is found or until the
number of trial values exceeds an input value, usually 8 to 16. If an
acceptable step is not found in the allotted number of iterations, the
algorithm will check the smallest value of the merit function obtained
during any of the iterations. 1If this value is smaller than the vélue

of the merit function at the current estimate, the algorithm will take

LN R



.
o
”.
e
:::: the step corresponding to the smallest value, then the algorithm will
i’ restart. No step is taken that does not improve the merit function.
RS
\':~
0
\'.‘-: II1.3.7 CHECK FOR TERMINATION
AN
C .
;::; After a successful step has been taken, an approximation to the
-\" gradient of the Lagrangian is computed using the current estimates of
oo
( the multipliers and new finite difference estimates of the gradients of
LA
:_' the objective and constraint functions. If
* |7 2=, o, v)|/max({ 1, |£(x™)|}
&
v
"j is less than the tolerance specified for stopping, the algorithm will
. . :
(3 terminate.
o
:f-: The algorithm will also stop if the step taken has norm less than a
" .
¥ ‘I'I -
-‘) specified value, usually 10 9. The algorithm will terminate, indicating
-:\ a failure if, the iteration after a restart results in a fallure since
SIS
__: another restart would result in the same failure.
-
|
-t
:.: I1.3.8 UPDATE THE APPROXIMATION TO THE HESSIAN OF THE LAGRANGIAN
- .
.~' The updating of the approximation to the Hessian of the Lagrangian
;::j function follows the procedure described in section I.5, with the :
l::; exceptions noted below. ‘
A
.:.»- -69-
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N
-‘\
:ﬂ: Recall that y = v, 2(x", u7, v - v (x®, u, v?), where x" and x©
SN .
.
™ are the new and old estimates of the solution, respectively, and u® and
v@ are-the vectors of multipliers. Let s = as® be the actual step
taken. The BFGS update will not be positive definite unless s'y > O.
We follow the suggestion of Powell [1978] of setting y to .
8y + (1 - 8)Hs , .
where 0 = 0.8(s'Hs/(s'Hs~s'y)) if s'y < (0.2)s'Hs in the formula for the
BFGS update of the approximation matrix H. This will guarantee that the
update 1is positive definite even if, originally, s'y was close to zero.
If either s'y/|s'|y‘ or s'Hs/|s|2 is small ( < 10_5), the algorithm
will restart since these are signs that the Hessian approximation is not
good. If |y|/|vxx(x“, ul, vn)l is small, there will be no update but
the algorithm will not restart.
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'_ I1.4 PERFORMANCE OF OPCON
.

f:::

I

A II.4.1 TEST PROBLEMS

l.—‘

{

,\-I: It is difficult to find in the mathematical programming literature
&

lﬁ.

{: large-scale nonlinear programming problems suitable for use as test

‘;" problems. Yet the pérformance of a large-scale algorithm on small, but
':;: well-known, test problems is an important part of evaluating the

\ .

\:C: algorithm. This section describes the performance of the OPCON

<4
“" algorithm when solving eleven test problems, seven of which appear in
{

: the literature. The other four were either created by the author or
.' obtained from unpublished sources. Of these latter four problems, one
-; has 32 variables and the other three each have 60 variables. They are
v-'::- considered helpful in assessing the performance of a large-scale
~.~
N nonlinear programming algorithm.
o~
A
| 4
;-'.. Two problems were obtained by adding a set of ten nonlinear and
.:: five linear constraints to two well-known unconstrained optimization
. problems (Buckley and Lenir [1983]). These two problems are highly
'('_-' nonlinear and non-convex. The interiors of several degenerate
f,;: ellipsoids are excluded from the feasible region by some of the
<
@

- e

v
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‘e
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S
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", constraints. Since the unconstrained minima are contained in the
' excluded region, the problems are strongly nonconvex. Since these
" problems were created for this paper, we are unable to compare their
i

‘.::-: solutions with any solutions obtained with other algorithms.

B

)

*\

«'.:-:2 Also included in the set of test problems is a weapon—-allocation
::5;- problem having a single linear constraint and non-negativity constraints -

1 -*: .

( R on the variables; an economic model of OPEC oil prices that has 10
ALY

::;.j{ nonlinear constraints and 40 linear constraints. [Each of the eleven
oy

::.}:j test problems is described in Appendix A.

C

TS

g IT1.4.2 TEST RESULTS '

h ' The probléms were run on a VAX 11/780 minicomputer using double
:'_f-? precision for all noninteger computations. The compiler option that
‘.'.-.j

:;.-:: stores double precision numbers in a format allowing a dynamic range of
{

5}\

‘) 107307 5 10"397 yas selected. Table 1 summarizes the test results.
\":: The tolerance for successful termination was set to 1072 for all
SN

,$,.:-::’: problems. The CPU time (in seconds) is the execution time of the
l"': .

.' program for each problem and does not include compilation or linking

}::;, time. The total number of function evaluations and CG iteratioms are .
Doy

Y

“"r:: given. The number of each type of constraint -- nonlinear, linear, and

[ -~

‘ : upper- or lower-bound -— 13 given, followed by the number considered b
e

:;-:-:. active at the time the algorithm terminated. The norm of the Lagrangian

b

0

,.';w.":» gradient and the sum of infeasibilities are also given. The number of
o

®.

e

':;' -72=-

4
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times the CG algorithm failed to converge and the number of times an
improved value of the merit function could not be found are also given

for each problem. The total-number of restarts is also shown.

All eleven problems terminated successfully for the termination
tolerance given above. Even though the OPCON algorithm is not
specifically designed to solve problems having linear constraints, it
did perform well on the oil price model and tolerably well on the

weapon-allocation model.

As noted earlier, one of the problems that must be handled by the
algorithm is the posgibillty of M'M being singular or nearly so due to
having more active constraints than variables or gradients of active
constraints that are nearly linearly dependent. The algorithm handles
this problem quite well. The eigenvalues §f M'M were computed for each
iteration for all of the test problems. Condition numbers ranged up to
109. The ill-conditioning seldom caused the CG algorithm to fail. The
accuracy of the multiplier vector obtained under such circumstances is
questionable; however, the algorithm almost never failed to take a step

after solving these i1ill-conditioned problems.

It is interesting to note that the average number of CG iterations
per main iteration for each problem is only slightly more than the
number of active constraints (the order of the dual QP solved by each

call to the CG algorithm) indicating the efficiency of solving the dual
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and starting with the last estimate of the dual variables. The number

of function evaluations seems high until one considers that finite
differencing was used to compute all gradients. In some cases central
differencing was used, which increases the number of function

evaluations.
IT1.4.3 PARAMETER VALUES

In the process of obtaining these test results, it was found that
the values of several of the input parameters are particularly critical
to the successful termination of the algorithm. The choice of 0.1 for
the step—~length parameter, g, was found to be quite good for most
problems.‘ Smaller values sometimes allowed the algorithm to drift,
while larger valugs tended to cause more step~length iteration failures
and hence considerable more computational effort since each failure

causes a restart.

The convergence criterion for the norm of the residual in the PPCG
algorithm was normally set to 10-12. Larger values produced estimates
of the multiplier vector that were sometimes not accurate enough to
obtain a good step direction, whereas smaller values caused more CG
iteration failures with no compensating improvement in performance. The
relaxation parameter for the SSOR preconditioning step was set to 1.3.

This value gave good performance while larger values typically took more

iterations of the CG algorithm to converge.
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e Best choices for the parameters, BNDV and ACTV, used to determine
(;;( whether an upper- or lower-bound constraint or a general inequality
::ﬁ: constraint should be considered active are very much problem

<&, \-".1_

ﬁ:}: dependent. A choice of 1.0 for ACTV and 0.0005 for BNDV was normally
Catd

-'\J“\

K:)! acceptable, but for some problems different values were used. For -
::ﬁ: example, ACTV was set to 0,05 for the Proctor-Gamble problem and to 0.5
SN

e

{:a} for the Hexagon problem. The BNDV parameter was set to 0.005 for the E
(“3; weapon-allocation problem, to allow it to pick up zero allocations more
:};: quickly. If BNDV or ACTV is set to too large a value, constraints not
s
‘}fij active at the solution may continue to be considered active when the
Pl

'...'-‘1

algorithm gets close to a solution. In this case, it is possible that
more constraints will be active than there are variables in the problem,
and the need to solve the perturbed problem near the solution may hinder

convergence.
I1.4.4 FULL HESSIANS VERSUS SPARSE HESSIANS

One issue of major concern during the development of this algorithm
was the degree to which ignoring fill-in in the BFGS update would
degrade the performance of the algorithm. Table 2 shows the results of
comparing full and sparse Hessian matrices on a subset of the test
problems. Fill-in was not ignored for the full Hessian runs. The table
shows the degree of sparseness for each problem. The termination .

criterion was set to 10-6, to force a more stringent comparison.
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The value of this comparison is limited, considering the size of

the test problems used. The results suggest, however, that the

practical penalty for ignoring fill-in is minimal.
II.4.5 COMPARING OPCON TO MINOS 5.0

MINOS 5.0 is a well-known implementation of the projected
Lagrangian algorithm developed by Murtagh and Saunders [1982]. The
interested reader should consult the user's guide for MINOS 5.0 (Murtagh
and Saunders [1983]) to obtain a full description of the features of the
code. Performance of OPCON and MINOS 5.0 on several of the test
problems is summarized in table 3. (Timing data for MINOS was obtained

from the same VAX 11/780 system described earlier.)

MINOS is clearly superior to the current version of OPCON for
problems having nearly linear constraints, such as the weapon—-allocation
problem and the World Bank problem. For problems that are highly
nonlinear, especially in the constraints, OPCON is as good as MINOS and
often much better. MINOS, for example, was unable to achieve any
significant progress on the modified Powell singular function problem,
whereas OPCON manages to find a feasible solution having a much improved
objective function value. The Colville no. 2 problem has considerable

nonlinearity in the objective function and constraints, but ten of its
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TABLE 3. OPCON VS. MINOS COMPARISON

OPCON MINOS

Function CPU Function CPU

No. Problem name evaluations time (sec) evaluations time (sec)
. 3 US Steel No. 1 21 1 59 3
4  US Steel No. 4 236 4 181(1) 5
5 Hexagon 114 5 287 7
6  Wong No. 2 179 3 1,836 23
7 Dembo No. 1 570 16 3,945 1,711
8 Colville No. 2 1,130 52 678 15
9 Weapon Allocation 3,993 286 1,398 24
10 World Bank 248 83 1,214 27

11  Mod. Powell Sing. 10,565 596 (2)

(;) MINOS found a worse solution than the oﬁe found by OPCON.
(2) MINOS was unable to solve this problem.
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15 variables appear as linear variables in all comnstraints and the
objective function. As a result of its explicit handling of linear

variables, MINOS did outperform OPCON on this prbblem.
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II.5 CONCLUSIONS
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. Based on the results given in the preceding section, the OPCON

4,
.

L Y

algorithm shows promise of being a practical tool for solving large-

v

_,.
»
A

XA

scale nonlinear programs. Obviously, problems with 60 variables are not

b
LRS

large; however, the scarcity of problems in the literature having even

half as many variables would indicate that these results are

»
D
)

significant. Also, some of these. test problems -— i.e., the U.S. Steel,

b -

- ’:

.’\ .

:;5 Colville, and Dembo problems -- are very difficult to solve in spite of
Yoy

s their smallness. It is hoped that the algorithm will soon be applied to
{

., larger problems that would allow a more realistic evaluation of its
N
Wi ability to solve large, sparse nonlinear programs.

SCN

" .

-2

o Because it uses an active set strategy and solves a dual problem,
».

%}{ the algorithm ghould be able to deal with large numbers of nonlinear or
oy

4 \l

Lo linear inequality constraints since the size of the dual problem is

}{5 determined by the number of active constraints. The current version of
:j: the OPCON algorithm stores the M matrix -- which has n rows and p'

Sl

(S
‘g& columns, where n is the number of variables in the problem and p' is the
®

~ number of active contraints —- in a dense format. This array is the

A
B limiting factor on size. It may be possible to store this array in a
P
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:{Q sparse format (see section II.3.4).

5%

;-i: The coded version of the algorithm described here is not as
s";

i: efficient as it could be. The calculation of the eigenvalues of the M'M
{t;' matrix is, for instance, unnecessary. Also, the function evaluation .
N routine evaluates the objective and all nonlinear constraint functions
L)

f}); on each call. As discussed in section II.2, a more efficient version of -
f) 4

}‘J the code would split the objective function evaluation off from the

i

’;Eﬂ nonlinear constraint function evaluations. This would allow a more

224

;}% efficient use of the technique of Coleman and More [1982] for reducing

-t

° the number of function evaluations required to obtain finite difference

<2

oy estimates of sparse gradients.
!
a_: ¢
{ « Several questions rémain unanswered. How well the algorithm will
work for solving really large, practical problems is probably the most
interesting of these. Other questions of interest include determining
'*; the effects of the errors in the estimates of the gradients and the
'iuj deviation from the BFGS update when fill-in in the Cholesky factor is
-
“’uj ignored on the performance of the algorithm on large-scale problems. It
:. would be comforting to know what conditions are required to guarantee
"j the convergence of the projected CG algorithm described earlier. . .
&
e
i{- The step-length control procedure is simple, and it may be possible ’

e
A to improve the performance of the algorithm by improving this
.r.:.p
-rzj

x-I‘




procedure. For instance, an adaptive procedure that would allow step-

length parameter, a, to be greater than 1 could produce better results

on problems having singular or nearly singular Hessians.

- The development and testing of an extension of the sequential
) quadratic programming algorithm for solving large, sparse nonlinear

programs has been presented here . The test results indicate that the

algorithm has the potential to be a practical tool for solving problems

having highly nonlinear objective and constraint functions.
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APPENDIX A
TEST PROBLEMS
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The test problems used to evaluate the nonlinear optimization code

,‘ ‘
- GOV | REAAA

developed for this paper are described in this appendix. Mathematical

XN~ Ly

formulations are given for the problems having a small number of

e B

variables. A FORTRAN listing for the coded problem is included for each

W

'd -“,.a'

problem. Termination data reported for each problem includes the -

o~

::j objective function value, f(x*), the norm of the gradient of the

"o, Lagrangian, e(x*), and the sum of the infeasibilities, r(x*). The

L starting points for each problem, the value of the objective function at
the starting point, and the sum of the infeasibilities at the start are

also reported. The best reported result by any other algorithm is also

included.
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[1] Betts Problem

Reference: Hock and Schittkowski [1981], problem no. 53

mn £0x) = (x) = X)2 + (xp + x5 = D2 + (x, - D2 + (x5 - )2

subject to x) + 3%y = 0,
x3 + X4 - 2x5 = 0,

XZ-XS-O.
Starting point: x° = (7, 2, 6, 1, 2)',
£(x%) = 62.0,

r(x%) = 16.0.

Results:

Reported
OPCON results
f(x*) 4.093023256 4.093023269
e(x*) 2.8E~-10 2.17E-04
r(x*) 0 4.83E-15
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AN . SUBRCUTINE FNCVAL(X,F)

o <
. ] SETT'S PROBLEM.
: ¢

( JOVSLE PRECISION I(1),F(1),0NE,TVO
\ DATA ONE,TWO/1.0D0,2.0D4/

<
L
(2]

N Ti1)a(I(1)=2(2))2224(2(2)+2(3)-TWO)*%24(X(4)-ONE) 222 -
(j 1 +(X(5)-ONE)#22 ;

RETURN |

O END .
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[2] Proctor and Gamble Problem

"y s
P

tang 7. 7.°
o

-\ !.

-\‘i~
,}:}: Reference: Himmelblau [1972] problem no. 11
S

-{’.
2%

min f(x) = 5.3578547 x32 + 0.8356891 x;xg5 + 37.293239 x,

O
'
o k—

.'l »

LAy
ER - LA AN

subject to

a4

-~ "
44, 4,

f l!"

4

'y

s

QLA

0 < 85.334407 + 0.0056858 x,xs + 0.0006262 x,x,

]
NIy ~0.0022053 x4 x5 < 92
[ 90 < 80.51249 + 0.0071317 x,x5 + 0.0029955 x;x,
S
N + 0.0021813 x4% < 110
2 20.< 9.300961 + 0.0047026 x4xg + 0.0012547 x;x4
{_ | + 0.0019085 x4x, < 25
wx
o
g 78 < x; < 102
§ '.,.'.
J 33 < xy <45
NG
oo 27 < xq < 45
g
i
3 _ 27 < x; <45
o
27 < xg € 45
R
-"- ~
DN
SO
N
il Starting point: x° = (78.62, 33.44, 31.07, 44.18, 35.22)',
d £(x%) = 10418.2
r(x%) = 0.0.
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Reported
results

10126.64100
Not reported
Not reported
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3USROUTINE FNCVAL(Z.P)

PROCTOR-GAMBLE CO. - HIMMELBLAU PROBLEM NO. 1i1i.

(s N ¢ g}

DOUBLE PRECISION X(1),F(1),A(3),3¢(8),.C(4),D(CQ)

€«

DATA A/S.3578347,0.835689,37.293239/

DATA B/85.334407,5.48%8D-3,6.262D~4,-2.2053D-3/
DATA C/80.51249,7.1317D-3,2.9933D-3,2.1813D-3/
DATA D/9.30096,4.7024D-3,1.2547D-3,1.7083D-3/

Fl1)=A(1)22(3) 222 +AC2)RT(LINX(T) +A(3)2X(1)

F(2)aB(1)+B(2)®T(2)2L(S)+B(I)RT( L) XTI +B( ) *T(3) 2X(F)
F(3)==F(2)
T(4)aC(1)+C(2IRT(2)2R(5)4C(IISTC(LINI(2)+C(4) 2T (I) %27
F(S)a=F(4) '
T(6)aD(1)+D(2)2T(3)2T(S)+D(I) 2L 1) AT () +DC4) 2T(I) *2(4)
F(7)a-TF(8) . :

- RETURN _ |
END ‘
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o [3] U.S. Steel Problems

References: Himmelblau [1972], problem no. 22; Hock and Schittkowski

[(1981], problem nos. 95-98.

6
min f(x) = T c¢,x
{=1 171
sub ject to
- 6
: I 84183 * bixyxg + byXsXs + byxuXs + byx x5 + byxyxg
. i=1
. + b5x5x6 < Bl
'.-
.ﬁ;
N 6 }
NN I agp%; + bgxyx3 + byxyxs + bgk,Xg + boXsxg < By
e i=1
6
T ai3x1 + b10x4x5 < B3
i=1
6
) 8141{1 + b11x1x6 < 34
i=l
The [a..] and [b.] coefficients are given in the listing. Four problems
are defined by the [B.]:
p e
S
o
b S
.
3
."J
i'~¢
]
3
et
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1 -4.97 +1.88 +29.08 +78.02
2 -4.97 +1.88 +69.08 +118.02
3 -32.97 =25.12 +29.08 +78.02
4 -32.97 =25.12 +124.08 +173.02

0 <x; <0.31 0 < x4 < 0.042

0 < xy < 0.046 0 < x5 < 0.028

0 < x5 < 0.068 0 < xg < 0.0134

All four problems were solved by scaling the variables as follows:
Scale x; by multiplying by 10; scale the other five variables by

multiplying by 100.

Starting points:
For all problems x° = 0.0.
For problem 2 £(x°) = 0.0 and r(x°) = 4.97.

For problem 4 f(x°) = 0.0 and r(x°) = 58.09.

Results:

Problems 1 and 2 have the same answer as do problems 3 and 4;

therefore, only two sets of results are given.
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AN
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A
)

v 4

v @~

'o s . LM e

OPCON

Problems 1-2

f(x*) 0.01561952525

e(x*) 5.80E-05

r(x*) 6.17E-16
Problems 3-4

f(x*) 3.135809123

e(x*) 3.31E-09

r(x*) 1.89E-14
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EULVM L LW P00 W 3 AE S AL ANy TR LR CLER L L8 LR SR LR CRERENER TSR ARA TG W VR s VH S YV, WIS FR VR I

" . .
DR I 250 00 e T, DR NS IS el

Reported

results

0.015619514
0

3.1358091
0

0
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3UBROUTINE FNCVAL(I,P)

Y3 3TEEL PROBLEM - HIMMELBLAU NO. 22.
SCALED VERSION.

OO0 00

DOUBLE PRECISION X(1),F(1)

[¢]

INTEGER I,NVAR
DOUBLE PRECISION A(4,4),B(11),C(4),DDOT,SCALE(S)
. DATA NVAR/&/
DATA SCALE/1.0D1,5*1.0D2/
DATA C/4.3D0,3.18D1,4.33D8,1.58D8,4.85D1,4.7D0/
DATA A/-17.1D0,-38.2D0,-2.04D2,-2.12302,-6.234D2,-1.4935D3,

. -17.900,-36.8D0,-1.139D2,~1.697D2,-3.378D2,~1.3852D3,
> - 9.D0,2.73D2,0.D0,7.0D1,8.19D32,0.D0,-1.599D2,3.11D32,
> 0.D0,-5.87D2,-3.91D2,-2.198D3/
DATA B/1.492D3,3.58D3,3.81D3,1.85D4,2.43D4,1.39D2,2.45D3,
. 1.64D4,1.72D4,-2.6D4,1.4D4/
c
00 10 Is1,NVAR
2CI)sX(I)/SCALE(I)
10 CONTINVE
c I}
£(1)sDDOT(NVAR,.C,1,X,1)
F(2)=DDOTI(NVAR ,ACL,1),1,X,1)¢BCLI2X(1)RX(3)+B(2)2X(3)2X(3)+
b3 BC3)RTCA)ILX(S)+BCAIXX(A)IRT(4)+B(S)RI(SIXNT(4)
F(3)sDDOT(NVAR,AC1,2),1,2,1)+BC6)RT(1)22(3)+B(T7)RXC4)2X(S)»
1 ) BCB)EZ(4)2T(6)+B(P)RX(5)T(4)
F(4)=DDOT(NVAR,A(1,3),1,2,1)+BC10)2X(4)2X(S)
P(S)=DDOT(NVAR,AC{,4),3,X,1)+BC11)22(2)2X(¢§)
c
DO 20 Is1,NVAR
Z(1)aSCALE(I)®X(])
20 CONTINVE
" ¢
< RETURN
-7 END
\ -
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{4] Hexagon Problem

References: Himmelblau [1972], problem no. 16; Hock and Schittkowski

[1981]), problem no. 108.

min f(x) =

subject to

Starting point:

X2 +
x52 +
x12 +
(%, -
(% -

(x3 -

-xlxa + x2x3 -

xaz <1

x62 <1

(x9 - x9)2 <1

x5) + (xz - x6)2 <1
X9)° + (%9 ~ X8)2 <1

XqX, + XgX, = XgXg + XgXy




Y

.
XA !

Results:

s
4
s s
¢

3 o,
AAE - E
SO .

Reported

Rhnd
.I.I.C‘l

OPCON result

“ ol

t‘.l‘

l', \ ] .
.

f(x*) -1.732050808 -1.732050808

T 2
[ A
..’.I

e

oy

e(x*) 2.63E-08 3.9E-10

r(x*) 2.37E-13 3.3E-12
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SUBROUTINZ FNCVAL(I.,F)

HIMMEL3LAU PROBLEM NO. 1é - HEXAGON.

anon

DOUBLE PRECISION X(1),F(1)

FC1)aZ()*Z(4)=Z(2)*X(I)+TCIIAT(P)=T(S) XX T) +X(3)*X(8)-X(4)22(7)
F(1)==F(1)

Fi2)aZ(3)2x24X(4)22]

F(3)aX({S)222+X(6)2%2
T(4)sX(1)2224(2(2)-X(Y))2*x]
F(S)a(X(1)=X(3))®%*24(X(2)-X(4))2¥2 -
F(6)a(X(1)=X(7))2224+(X{(2)=2(B))2x] '
F(7)a(2(3)=X(5) )22 (X(4)=L(4))2%]
F(8)a({X(3)-X(7))222+(X(4)-2(8))22%32
FC9)aZ(7)%24(X(8)-X(7))*%]
F(10)sX(2)2X(3)=-X(1)%X( Q)

F(11)==Z(3)22(M)

F(12)=2(3)*X(Y)

FC(13)=X(4)2X(7)-X(3)2X(8)

RETURN ’ '
END

’
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[5] Wong Problem No. 2

oty

¢ o
~%

—
s

PR

Reference: Hock and Schittkowski [1981], problem no. 113.

'.l '.‘ /l I""l"l-

7 AN
(B

‘ min £(x) = x)2 + X% + x %y = 4%y = 16x, + (x5 -10)% + 4(x, - 5)?

..l "l *

+ (x5 - D2 + 2(xg = 12 + 5%;2 + T(xg - 11)2

OO

+ 2(xg - 10)% + (x19 - )% + 45.0

AN

™

¢

subject to

“ait NS .
. e 8 \'
f'_f.‘"-"..l

3(xy - 2)2 + 4(xy - 3)2 + 2x3% - 7x, < 120

S

5x,2 + 8xy) + (x3 - 6)% = 2x, < 40

.l .‘
A AT

0.5(x; - 8)% + 2(x, - 4)2 + 3x5% - x4 < 30

[

v

-
b
»

x,2 + 2(xy = 2)% + 2xx, + lbxg - bxg < O

-

-3x1 +6x2 + 12(x9 - 8)2 - 7x10 <0

A

R

4X1 + SXZ - 3X7 + 9x8 < 105

10x1 - 8x2 - 171(7 + 2x8 <0

‘1_‘\ L .; 2l
. »

»
Dl

’ L
CAROR

Starting point: x° = 0.0, i =1, ..., 10

“d

A
.

£(x°) = 1352.0

-
Sty fy
LA )

r(x°) = 810.0.

W7
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PRTIPIF AT A
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Results:

oty
.

] l‘.'l

Reported

-I"-l‘ 'o

2
.D

2,00 0 Sy

OPCON result

g Ay
., .|.<_1.

f(x*) 24.30620907 24,3062091

o e(x*) , 1.40E-05 1.2E-09

= r(x*) 7 .70E-10 4.6E~-10
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SUBROUTINE FNCVAL(X,F) .

[g]

JQOUBLE PRECI3ION X(1),F(1)

JRO3LEM: WONG NO. 2; FROM H AND 8 #1113 P. 123.

0N

JOUBLE PRECISION TEMP

(2]

TEMP=X(1)®22+X(2)R22+2(1)%X(23)-14.0D0%X(1)~1.6D12X(2)

§ (X(3)-1.0DL)*22+4 0DO*(X(4)-5.0D0)2®24+(2(5)-3.0D0)2*2,

$ 2.0D0%(X(4)-1.0D0)**2+5.0DO*X(7)*22,7. 0DO2(X(8)~1.1D1)222,
$ 2.0DO®(X(9)~1.0D1)%%2,(X(10)=-7.0D0)*=*2+4.5D1

FCL1)=TEMP

TEMP=3.0D0*(X(1)-2.0D0)**2:4.0D02(X(2)-3.0D0)2%24+2.0D02X(3)xx2.
$ 7.0D0*X(4)-1.2D2
F(2)sTEMP

"TEMP=S.0DO0*X(1)22248.0D0%X(2)+(X(3)=6.0D0)#22-2.0DONX(4)-4.0D1
F(3)aTEMP

TEMP=(5.0D-1)%(X(1)-8.0D0)*224+3.0D0%(X(2)-4.0D0)**2,
$ 3.0DU*X(S)*r*2-X(4)-3.0D1
P(4)=TENP

TEMP=X{1)22242.0%¢2(2)=2.0D0)*22-2.0D0*X(1)*2(2)+1.4D122(S)~
$ 4.0D02X¢4)
P S)=TENP

TEMP=-3.0D0%X(1)+4.0D022(2)+1.2D1%¢2(9)-8.0D0)*%2-7 0DO*X(10)
FC4)sTENP

RETURN
END
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e [6] Dembo's Problem no. 1B

e References: Dembo [1976]; Sandgren [1977]), problem no. 17

5 11 -a .
min £(x) = 10 LI i
i=1

-' . " .
‘l ‘l t ‘l “
s . '.l .

i Du
W

subject to

-

c1%y + CoXo + c3X3 + C4X4Xs < 1.0

-
SRR

. ¢
. P
Lttt et

R

2
‘\;

*s *6
c5x1 + c6x2 + C7X3 + csxaxlz + 69 ;— + Clo x—

12 12

g &=
',
ks

5:$¢5

X

o~

+ c11X7X12 + Cpx4x%5 + c13 + C14X)%4%s

X2

.,

.
%

X, X
+015 xax

a"(.
P

X
10
+ c16 -x—'. < 100,

12 12

{

oA xRN

XX
AP

c17X) + 18Xy + C1gX3 + CXy *+ Cp1Xg F C%Xg + C3Xg

v

| :.:;. X, X

T * CagX4Xs + cpsXoXg + CoeXpXyXs + Ca7 %,
SN

o + C28X9 + C29XIX9 + C30x11 < 1.0,

AR

Pos

0.1 ¢ x; <100.0 =1, ..., 12,

l.,
Vi

I_{.".

.'..‘l .
hh )

fel

k)
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é
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- JadaAer ALACA
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W
R

9, *

-
* -
- \'
.

; AR

§ -.{:
.

Starting point: xoi = 4.0, 1 =1, .o, 12,
£(x%) = 0.22768,

r(x% = 15.114.

This problem was solved by scaling the first 11 variables by

“‘\..f-

multiplying each by 10.

o
. R0
1

Results:

s

o~
L %
’

P
L ;'I"/

"y

-

Reported

hY

-
P4

/@Te.

[
‘.l
/

QPCON result

(4
P

ay

‘v":“ ., 's 5

f(x*) 3.169024101 3.1682133 '

P ALALA

e(x*) 3.33E-04 -

o~

r(xt) - 0.0 C -

Ay L]
h] ) '\.' ‘.
‘I

g
Do RO
'R ‘_ l‘ "

S

This is a difficult problem that OPCON has not handled very well.

Pl N

It is a geometric programming problem that is poorly scaled. OPCON

o0
‘.

[y

required 300 iterations to achieve the results shown, and the optimal

hY
I\-

.
-

.
Sl

L ] .; !
Y

values for the variables are not as close as one would like to those

0

reported by Dembo [1976].
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e 3UBROUTINE ENCVAL(X,F)

S [ .
{+ c OEMB0 PROBLEM NO. 1 FROM SANDGRENS THESIS.

- < .

e JOUBLE PRECISION 3(1),F(1)

c

ot DOVBLE PRECISION TEMP,TEMPX,EPS,ONE,TEN

o DOUBLE PRECISION B,A(11),C(30)

D) DATA EPS,ONE,TEN/!.0D-15,1.0D0,1.0D1/ '
- DATA B,A/1.0D5,1.33173D-3,2.270927D-3,2.48544D-3,4.6700, 3
N + 4.671973D0,8.14D-3,8.092D-3,5.D-3,9.09D-4,8.8D-4,1.19D-3/
o DATA C/$.367373D-2,2.1863744D-2,9.7733533D-2,6.6940803D-3,
7o + 1.D-¢,1.D-5,1.D-4,1.D-10,1.D-8,1.D-2,1.D-4,1.0898645D~1, -
e + 1.4108052D-4,1.D-23,1.9304541D-¢,1.D-3,1.D0-6,1.0-5,1.D-¢,
{ + 1.0-9,1.D-9,1.D-3,1.D-3,1.0898645D-1,1.6108052D-5,1.D-23,
b + 1.930451D-8,1.D-5,1.1184059D-4,1.D-4/
b c : : -

O DO £ Ist,11

N I¢1)=2(I)/TEN

s S CONTINUE

- c L4

AN . TEMP=B

e D0 10 Iaf,1t

i‘\-' IF (2¢1).GT.EPS) THEN

- TEMPXsX(I)
N ELSE
( TEMPX=iPS

R ] ENDIF

2, TEMP=TEMPS*TEMBI*#(-A(]))

2 10 CONTINUE

e P(1)=TEMP

%) c

)] F(2)=TEN®(C(1)2X(1)+C(2IRXT(2)+CC(3)2T(3)+C(4) X 4) 2X( ) -ONE)

A c ;

2 FC3)aTENT(CIS)®T(1)+C(4)22¢2)+CL?IRT(II+C ()2 (AIXT(12)+
o . C(PIRT(SI/XT(12)+CC10)2XCE) /TC12)+CLILI LX) 2X(12)
e + CC12)2X(AIRX(S)+C(13)RT(2IRX(S) /T(12) e
o . CCL4) 2T () RT(4) 2X(S)+CCLSINT(T) RT(S) /(X (LI AX(12)) +
9 + CC14)9X(10)/X¢12)-0NE)
b c
s FC4)aTENT(CCI7)22(1)+CC18)2T(2)+C(19)22(I)+C(20)IXX(4)+C(21)2X(S) s ;
SO . Ci22)2T(6)+C(23)2X(8)+C(24IRT(4I XX (S)+C (2SI XX (2)ILX(S)
N * C(24)92(2) 22 (4 XTSI +C(27I%X(2ITT(SI/XT(4I+CC28)2X(9) e
:..._;- . C(29)2X(1)RT(9)+C(30)2X(11)-ONE) .

-5 c ,

e DO 20 1af,11

A Z(1)=TEN*Z(I)

- , 20 CONTINUVE

e c

o RETURN

® mo :

o S

;.':::3

w», e -
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[7] Colville's Problem No. 2

References: Sandgren [1977], problem no. 14; Hock and Schittkowski

[1981], problem no. 117; Himmelblau [1972], problem no. 18.

10 15 15 15
min f(x) = £ b.x, + L L Ci1prioip XqXg+ 2 I
=1 1 ey gy TIOFIOTLY T 40,
subject to
15 10 )
-2 i-zll ci-lO,j Xi + ifl aijxi - 3djx10+j < O-Oj, ] = 1, ce ey 5,

xj > 0, j = 1’ ...’ 15.

See the listing for coefficients.

Starting point: x°j = 0,001, =1, ..., 15, § % 7;
x°7 = 6000,

£(x°) = 2400.1053,

r(x°) = 0.0.

A-21
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Results:
Reported
OPCON result

f(x*) 32.34867897 32.348679

« R
L]

e(x*) 2.21E-05 3.5E-05

P
L SR WL RS

r(x*) 6.20E-14 0.0

t"“: o \; Py — -.‘
LA N
«

..l .l'l . by & & ) ’_ - i d
FORhd DO - S

o o L LA SN
..\'..'":\.'."{"f. .L’(.-.'.‘.,'

[
LA

A-22

-

AR
AN e

)
O

&l
$$.
..J

\\._\" T I "'-',O‘ 'J'f.l_'q'( "2 e .<

R T R S e R R R N R LT IO ISRy




SUBROUTINE FNCVAL(Z,.F)

SOLVILLES PROBLEM NO. 2

OoOo0oon

JOUSLE PRECISION X(1),F(1)

INTEGER I.,J
DOUBLE PRECISION ZERO
DOUBLE PRECISION B(10),C(S5,5),D($),A(10,5),B1,C1,C2,D1 )
DOUBLE PRECISION RHS(S3)
¢ . DATA B/4.D1,2.00,2.5D-1,4.D0,4.D0,1.00,4.D1,6.D1,-5.D0,-1.D0/

DATA D/4.DO,8.D0,1.D1,6.00,2.00/

DATA C/3.D1,-2.D1,-1.D1,3.2D1,-1.D4,-2.04,3.9D4,-6.D00,-3.1D1,

+ 3.2Dt,-1.Dt,-6.00,1.D1,-6.D0,-1.D03,3.2D01,-3.1D1,-6.00,
> 3.90:,-2.D01,-1.01,3.2D04,-1.01,-2.D1,3.01/

DATA A/-1.6Dt,0.00,-3.5D0,0.D0,0.00,2.D0,-1.D0,-1.00,1.00,1.00,
+ 2.p0,-2.00,0.00,-2.D0,-9.D0,0.D00,-1.00,-2.D0,2.D0,1..D0,
+ 0.00,0.00,2.00,0.D0,-2.D0,-4.00,-1.D0,-3.D0,3.00,1.00,

* 1.00,4.D00,0.00,-4.D0,1.00,0.00,-1.00,-2.D00,4.D0,1.00,
* ¢.pD6,2.00,0.D00,-1.D0,-2.800,0.00,-1.D00,-1.D0,5.D0,1.D0/

DATA RHS/1%.0,27.0,36.0.,18.0,12.0/

BATA ZERO/8.DO/ . {

B1sZERO
DO 10 I=1,10
Bi=B1+B8L{I)2I(D)
10 CONTINUE

C1sZERO
DO 30 Jst},1$
DO 20 I=11,1$
C1aC1+C(1-10,J-10)22(1)2X(I)
20 CONTINUE
30 CONTINUE

Dia=ZERO
DO 40 J=11.,89
D1=D1+D(J-10)2X(J)v%]
40 CONTINUE ’

F(1)aB1+C1+2.D00%D1

30 100 Jef,S
CtaZERO
DO S0 Ieti1,15
C1=Cl+C(I-10,J)%X(1)
S0 CONTINUER

C22ZERO
DO 40 Isi,10
C22C2+A(1,J022(])
60 CONTINUE

-l. ..."‘ P .

F(J+1)eRH8(J)~2.D0%C! + C2 - J.DO*D(JY*X(J+10)%22

5%
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100 CONTINUE
RETURN
END
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e [8] Weapon-Allocation Problem

References: None.

. 6 7

i;g ma- $ o, M Q- pij)xij/nj
[ .:_\:, =1 i=1
f;ﬂ

-ﬂ?j subject to T e, © x , <4900
o et

xij > 0’ 1 = 1’ ...’ 7’ j = 1’ '..’ 6.

5 N
men
.

5 %%

Al

Data:

"
4 . Wi
*» .‘"} 'l ",‘i,fl

pij'

v ..',
. :' ‘l

Weapons

l'.l

k)
.
D

i/ 1 2 3 4 5 6 7

i

L NN
( I‘. l‘ *
[ 20 B I

e

Targets 1 S50 .58 W42 42 0 0 0 5

]

- 2 030 031 037 036 019 0 0 40

PN

3 .10 .12 .20 .30 0 0 0 55

PR AR
PN

.05 .05 .07 .07 0 40 A5 18

..' A '."‘
v ' 'n N
&

SN

bad AR P A A
sl
[+

5 .68 .68 .68 61 a7 «39 90 18

LR

43 W43 .35 .29 A1 75 0 70

ey 12 12 12 15.6 21.6 3.5 21.3

A=25

L
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i

K

5:{: This is a weapon—allocation problem where X3 denotes the number of
Eii; weapons of type 1 to be allocated to the class of targets of type j.
Elb‘ The objective function is the negative of a utility for a given

Eiii allocation. The constraint is a volume constraint on storage. It would
k¥t: also be a cost constraint. The variables corresponding to Pij being

T zero are not considered in the optimization, so there are only 32

jé;; variables in the problem.

-~ Start: xij = 2.0 for all 1 and j,
< £(x°) = -29.535,
r(x°) = 0.0.

- Result:

e ' OPCON

.
*s
tale,

f(x*) -167.7054586

a0,

»
'Y

«
.

e(x*) 1.37E~02

("
-

r(x*) 1.02E-12

’

..‘.' s B
ORI

This problem is difficult because it takes a long time to determine

ne
rs

o
!

which variables are nonzero (eight are nonzero at the solution). Also,

et
AN

.

convergence is slow.

..
a4l

'® .
o,

Wl
PAL AR

[
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AN -
N
L 3UBROUTINE FNCVAL(X,F)
N, .J, o
R, c THIS IS A VEAPONS ALLOCATION PROBLEM.
- [
{ JO0UBLE PRECISION X(1),F(1)
-.::-\. c
NN INTEGZR TARGET(32),TARDEX,I,J
i DOUBLE PRECISION PX(32),TEMP,PKCUM{é) ,NTAR(6)
SO0 c
U DATA NTAR/$.0,40.0,55.0,18.0,18.0,70.0/
O DATA PX/.50,.30,.10,.05,.68,.43,.58,.31,.12,.0%,.68,.43,.42,.37,
s * .20,.07,.68,.35,.42,.36,.30,.07,.61,.29,.19,.77,.41,.40,
RN . .59,.75,.45,.90/
N DATA TARGET/1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,2,5,6,
- . 4,5,6,4,5/
\ .‘. c
{ DATA ZERO,ONE/0.0DO,1.0D0/
A ¢
s .00 10 J=t,6
e PXCUNM(J) aONE
o ' 10 CONTINUE
! c
e 30 20 I=1,32
;:.;.; TARDEX=TARGET(I)
=3 PXCUM(TARDEX) aPXCUM(TARDEX) *(ONE-PX(1)) 2% (X(#) /NTAR(TARDEX))
o 20 CONTINUE
A ¢
e -TEMPaZERO
L D0 30 Jsi,é
e TEMP=TEMP+NTAR( J) * (PXCUM(J) -ONE)
-~ 30 CONTINUE ‘
¢ )
e F(1)=TIMP
: c
e RETURN
N END
4.;_\.:
s :
[
A
e
"':::
e e
53 v

»
P Y
. LD

.. ... .' ."":r:'. .‘;.

‘ .v'-.ﬁ.
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[9] World Bank 0il Price Model

o References: None (this problem was obtained from A. Drud of the World

XN Bank).
‘Al Let

( py = oil price in year 1/10.0,

. tyy = total demand for oil in year i/10.0,

- 8y = supply of oil by non-OPEC countries in year 1,
“

~

‘ cs; = cumulative supply by non-OPEC countries in

1/10.0,

DM N
"
<
[\
]
La

AL

]
L A

d; = demand for OPEC oil in year 1/10.0, and

‘)

= OPEC reserves of oil in year 1/100.0.

o -
(,.
(2]
[

AN

OPEC o0il revenue in year i is given by

LAY
XL

N . )

L] ..‘I ‘. !
Cete et ety

e« s 2
)
ae’.

<«

OPEC wants to maximize discounted o0il revenue over 10 years.

:‘.ﬁ"‘ls'lgl . \’

10 1 41i-1
min f(X) - - ifl 10.0 di(10.0 pi - Z.S/Ii)(m)

o’
O ".".ll"- ".n.‘.u . .;’ﬂ':n 3
PP K PP e a%ata's
-

LY
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b
hwx‘
N
S
5 subject to
N
- 10.0 td, - 8.7td,_; + 1.3 -10-23(—1—)1'1-0 .
U B4y T OJBGay T 2e9Pg T 10T 743 \TT015 ’
:::: i= 1, ceny, 10
iﬂ ¢ si - 75 81_1 - (1.1 + pi)-csi/7.o = 0, i= 1, eee, 10
'; 10.0 cs; - 10.0 cs;; =84 = 0, 1 = 1, ..., 10 ,
L,
1 10,0 dg = tdy + 84 =0, 1 =1, ..., 10 ;
0 : i
Kv 10.0 ri - 10.0 ri_l + di - 0, i= 1’ soe, 10
.:.: Pi’ tdi, si, csi, di, ti > 0, i= 1, coey 10.
=
»O
® This problem has 60 variables and 50 equality constraints.
-‘A
’.
oy r
’I
-~ Initial values for year O: td° = 1.8, :
{ : ‘ 8, = 6.5,
i cs, = 0.0, !
{ r, = 5.0. ]
|
Start: pi = 1-4, i= 1, ceey 10 ;

IN:
h.'l
N
.
Y
o
a
[ ]
J
]
)
208
\:,
o
- b
»

"y

L

"
"
L
\.§
'
»
','i
-.
) -

td, = 1.8, 1=1, ..., 10

31 - 7-0’ i= 1, sy 10

di bt tdi-si, i-l, coe, 10
i

csy - by sj, i=1, ..., 10
=1

A-29

L L K T UL T T A PR N N LN -’-p.. LY %l- ..'.\<-' - s.‘.‘-.. " e \"“V' NN \-s»..-.-hs oA AT AL
. . N "

AL A SIS, O

LM




\': ri = ri-l - di’ i= 1,

1 . £(x°) -1198.1202

c_'l:. r ( xO.)

11.565.

) Results:

( ' OPCON

»

£(x*) -818.4235909

A% NN
’l

e(x*) 5.34E-02

LA

r(x*) 3.23E-07

ALY
-'.u”l'.nl‘ i

B g ‘
A o7, 7,

& ?_-‘ A

.

s

4

NP
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Optimization (CONOPT)

-818.42359
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o SUSASUTINS INCVAL(IDUM.EFDUM)

5 -
{: : WORLD ZANK 3ICONOMIC MODEL OF OIL PRICES.
R < TEX YZAR HORIZCN.

'\ o 3CALZD VERSION.
O <

:; S0USL3 PRECIZION 2(40).7(117,IDUMCL),FDUM(L)
SO DOUBLZ PRECISION P(10),8(10).CS¢10),D¢10) .R¢10),8EG(13:
( BAUIVALINCE {2(1).2).(X€21).3),(2(31),C8),¢(X(41),D),
o8 . (X¢S1),R).(F(2),8EC)

1s J0U3LZ PRECIZION 30,C(?7),ZZRO,ONE,TEN

<. DATA ZERO,ONE.TEN/0.0DO,:.0D8,1.0D%/

i~ DATA 80/6.3D0/
k DATA C/2.%00.31.0%00,.7500,1.:D0,1.D00,2.02D0,7.0D-1/
\ <

:_-I z TRANSTER INPUT .VALUE3 TO SUBROUTINE VARIABLZS.

OA <

= 30 100 Ia2.40

[ (1) =XDUMC I}

™ 230 ZONTINVZ

o z

o Ti3422R0

o 30 208 Is1.13 _

i T1)aT(i)-TEN®D(I)®(TEN*P(I)-C(1)/RCI)IRC(2I22(1-3)
e IMiel-t

- IF {1.2Q.1) THEN .
{ 330(1)e8¢1)-C(3)280-(C(4)+C(S)LP(I)IRCL4I22C-CI(1)I/CL?))
N ELSE

2 SEQ(I)=8(1)-C(3)*SCIMI)I=(C(d)+CSIXPLI))®

- $ CCeIER(-CS(1IICK(T))

. INDIF

v 200 CONTINUE

.‘- -

c TRANSFER LOCAL FUNCTION VALUES TO DUMMY OUTPUT VARIABLE.
-:. c .

- DO 300 Is=i,1t

= EDUMCI) =F( 1}

& 300 SONTINVE

o c

- ACTURN

o END

o

- ]

- .

) :

. . e
n‘- v‘ .."‘..' ‘.‘ ‘.{'. '.. '.".
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[10] Modified Powell Singular Function Problem

References: Buckley and Lenir [1983]

This 1s a modified version of Powell's singular function with i

constraints added to create a large, constrained problem.

15

1 2 2
min £(x) = 7550 jfl [°1(‘43-3 + 10x4j_2) + 5(c2x4j_1 - xhj)

+ eglrygag = 2x451)" + 100k450 = cqxyy)?]

subject to (see the listing that follows for the code for
the objective function and 10 nonlinear constraints; the

linear constraints appear below)

=10x;5 = 2x55 = 5x39 < -10

=2x11 = 3% - 10x57 < =10

=5%y3 = 10x5, = 2x¢q < -15

=5%y7 = 2X33 = 2X4; < =20

-5%yg = 6x4; - 20x55 - 3x56 < -10

-1000 < xi < 1000’ i = 1, LI I 600

A-32
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A Start: x° =1.0, 1 =1, ..., 60.
£(x°) = 1.868,

.. r(x°) = 13.85.

Result:

: OPCON
, £(x*) 0.9490162422
\

- e(x*) 5.69E-05

. r(x*) 1.07E-13
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o -
R
o
> .
AN 3USROUTINE INCVAL(I,F)
.-.‘-- c
(, c A CONSTRAINED VERSION OF THE POWELL SINGULAR FUNCTION
o c MINIMIZATION PROBLENM.
N ¢
o~ DOUBLE ‘PRECISION X(1),F(1)
.'::) c
o INTEGZR J
) DOU3LE PRECISION TEMP,TWO,FIVE,TEN,ZERO R
4 DOVBLE PRECISION C(10)
e
N DATA ZERO,TWO,FIVE,TEN/0.0,2.0,5.0,10.0/
XN DATA C/1.02,.905,1.08,.963,2.05,.895,1.325,.974,1.114,1.009/
\::\ o4 .
¢ TIMPaZERO
te DO 10 Jal,15
o ] TEMPaTEMP+C(1)2(X(4%J-3)+TENRX(42J-2))222 +
e s FIVEX(C(2)RX(4%J-1)-X(42J)) 222 »
o~ s ClIIX(X(4XJI=2)-TWORX(42J-1)) 224 »
o0 & _ TEN#(X(42J-3)=C(4)2X(42J))x2g
® 10 CONTINUVE .
= c
N : F(1)=TEMP/1.0D3
3203 c
T TEMP=2ERO
- DO 20 J=t,20
{ TEMP=TEMP-C(S) A (X(3%J=2) +TWORX(3%J=1)) 222 -
o~ $ : C(OIR(X(3I2J1)+FIVERT(IRI) ) 222 ~
o s TEN®(C(7)2X(3%J-2)-X(32J)) x23
S . 20 CONTINVE -
o c '
o F(2)=(TEMP+5.0D3)/1.0D3
) c
! TEMP=ZERO
::.\: DO 30 Jst.,é
E\ls TEMPaTEMP-C(8) *(X(10%J)+3(10%J-9) )02 -
o) s . CUPIT(TVORZ(1020J-5)-X(10%J-9))%2T -
2 s - FIVEX(C(10)2X(10%J) +TWONX(10%J-5)) 222
® 30 CONTINUE
< ¢
L F(3)=(TEMP+4.0D2)/1.0D3 .
c '
:‘_.‘: TEMP=ZERO
o DO 40 Jel,3
' TEMPaTEMP-C(1)2(2(300J)-2¢202J-19))%%2 « '
R $ C(2)(ZT(20%3)+2(20%J=7)) %22 - |
= s © C(3)%(X(20%J-7)-TWOLX(20%J~19)) 222
) 40 CONTINUE
A c
A F(€)=(TEMP+4.5D2)/1.0D3
0. ¢ |
o TEMP<ZERO y
o DO S0 Jst,é : ' |
1;;: TEMP=TEMP-C(4) #(X(10%J-1)+TWORX(10%J-8)) 223 - |
o
'513 A-34 |
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$ (C(S)I*X(102J-1)=-FIVERX(108J=())N*] -

$ CCEIN(T(102J-8) +TENRX(100J-6)) 222
S0 CONTINUE
¢
Ft$)a(TEMP+7.002)/1.0D3
c
TEMP=ZERO
DO 40 Ja1,10
TEMP=TEMP-C(7) #(X(42J) -TWOAX(64J-5) ) 2%3 -
s FIVER(X(620)+C(8)2X(42J-3) )02 ~
3 (CCYIRXC42J-5)-TVORX(42J-3)) 222
60 CONTINUE
¢
F(6)a(TEMP+1.0D3)/1.0D3
c ‘ |
TEMP=2ERO
DO 70 J=t,3
TEMPTEMP-C(10) #(X(20%J-4) +TWONZ(200J-14)) 222 -
$ TWO#(C(1)*X(202J-4)-X(207J-10)) 223 -
.8 | (E(30%J-10)-CC2) *X(200J-16) ) #23
70 CONTINUE ‘
¢
F(7)a(TEMP+1.0D3)/1.0D¥
c
TEMP«2ERO
DO 80 Jai,12
TEMP=TEMP-(C(3) *2(52J) -TWOX(I*J-2)) 222 -
s CTEN®(X(S2J)+CCAIRX(S0J-0) )0 -
) . (2(S2J-4)4X(50J-2)) 2]
80 CONTINUE
¢
F(8)=(TEMP+1.003)/1.0D3
¢
FC=(-(CCSIRTC10)-TWORX(11))%22 - I(10)*X(11) + 2.0D1)/1.0D3
c .
FO10)=(~(CC4I*X(30)-TEN*X(40))%#2 - X(50)#2(40) + S.0D1)/1.0D3
c B
FC11)e(~(CC7IXX(31)+2(22)+C(B)2X(23))%%2 + 7.0D1)/1.0D3
" | |
RETURN
END
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[11] Modified EXTROS Function Problem

Reference: Buckley and Lenir [1983]

This is a modified version of the EXTROS function described in the
reference. The constraint functions are similar to those for the

preceding problem.

30

min f(x) = T%B £ {100 (x,, - 2 )2 + (1 - )2
i=1

X51-1 ]

X21-1

subject to (see the listing that follows and the linear

constraints for the preceding problem).
Start: x°% = 1.0, 1 =1, ..., 60
£(x% = 0.0

r(x°) = 1238.9.

Result:

OPCON
f(x*) 0.1289735371
e(x*) 9.78E-05
r(x*) 0.0
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o 3UBROUTINE ENCVAL(Z,P) !
¢ ‘
¢ A CONSTRAINED VERSION OF THE EXTROS FUNCTION 4
¢ c MINIMIZATION PROBLENM.
v . c

o : DOUBLE PRECISION X{1),F(1)

e c

e : INTZGER J

o DOUBLE PRECISION TEMP,ONE,TWO,FIVE,TEN,HUNDRD,ZERO
ON DOVBLE PRECISION C(24)

c

B DATA ZBRO,ONE,TWO,FIVE,TEN,HUNDRD/0.D0,1.D0,2.D0,5.D0,1.D1,1.0D2/
N DATA C/1.02,.90%,1.08,.9463,2.05,.895,1.325,.974,1.114,1.009,
8 2.57,8.04,-6.237,4.109,5.9599,6.2,-2.1,8.39,5.39,8.621.
g ¢ 5.0432,7.211,4.903,1.327/ '
( c

TIMPs=2ZERO

oy DO 10 Js1,30

o TEMP=TEMP+HUNDRD2 (2(2%J)-X(2%J-1)222) 222, (ONE-X(20J-1)) %22
Y 10 CONTINUE

': c

® F(1)aTEMP/HUNDRD

EL c

~ TEMP=ZERO

- DO 20 Jsi,20

D TEMP=TEMP-C(1)%(X(38J-2)+TWOLX(3%J-1)) %22 .

i $ C(2)2(X(32J-1)+FIVERT(IJ)) 222 -
i 3 TEN®(C(3)2X(38J-2)=-X(3I*J) )22

20 CONTINUE

o ¢
oy F(2)aTEMP+S.0D2

}:'. c

on TEMP=ZERO

- DO 30 Jsi,é

TEMP=TEMP-C(4) ®(2C1027)+X(10%J-9))n23 -

: s C(S)T(TWORX(108J-5)-X(108J-9))%%3 -
K 3 PIVER(C(6)2X(10%J)+TWORX(102J-5) ) 2n2
o 30 CONTINUE

c

. F(3)sTEMP+4.0D2

o ¢ ‘

S TEMP=ZERO
50 DO 40 Jsi,3
o TEMP=TEMP-C(7)*(2(20%J)-X(20%J-19))2¢2 -
o s C(8)IR(X(200])+2(20%3-7)) 022 —
ror. . s C(Y)IR(X(2027-7)-TWORZ(202J-19)) 222

o 40 CONTINUE

c -

b F(4)sTEMP+4.5D2

c

e ' TEMP=2ERO

s DO 508 Jsl.é

'Y TIMP=TEMP-C(10)*(X(10%J-1)+TWORZ(102J-8)) 223 -

A - s (CC11)%2(108J-1)=FIVERT(102J-4) )22 -

S .

N
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3 Cl(12)%(X(10%J-8)+TEN*2(10%J-4)) 222
S0 CONTINUVE :
r
-
T(S)sTEMP+?7.0D2
c
TEMP=2ERO
DO 40 Jsi,10
TEMPaTEMP-C(13)2(Z(462J)-TWORX{42J=-5))222 .
$ FIVER(X(4%J)+CC(14)2X(42J=3))a%] . e
$ (CCL1S) 22 6%8J-8)-TWORX(42J=3))222
60 CONTINUE
c
F(6)sTEMP+1.0D3
c
TEMP=2ZERO
D0 70 J=1,3
TEMPaTEMP-C(14)2(X(20%J-4)+TWORX(20%J-14))2*2 <
] TWOR(C(17)2X(208J=4)-2(20%J-10) )22 .
3 (Z(20%J-20)-C(18)2X(202J-16))%22
70 CONTINUE
c
T(7)=TEMP+1.0D3
c
TEMP=ZERO
DO 80 Jsi,12
TEMPaTEMP=-(C(19)22(52J)-TWORX(S*J=2))2x2 -
[ T TEN®C(Z(S2J)+C(20)22(S2J=4) )3 .
3 ’ (X(352J=-4)+2(52J=-2)) %22
80 CONTINVUE
(4
T(8)=TEMP+1.0D3
c
F(9)=-(C(21)22(10)-TWORX(11))"22 . X(10)%£X(11) +» 2.0D¢
c
FC10)8=-(C(22)2X(SO)-TEN2X(40))%%2 . 2(S50)*X(40) + $.0D1
c
FC11)s={(C(23)22C21)+X(22)+C(24Y%X(23))222 +» 2.0D1
c )
RETURN
END
[}
@
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APPENDIX B

MINIMIZING A QUADRATIC FUNCTION OVER

A SET OF MINIMAL INFEASIBILITY.
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In this appendix, we solve the problem of minimizing a strictly

convex quadratic function over a set of "minimally infeasible” points
defined by a set of inconsistent linear inequalities. Let the original

quadratic program be given by

(P) wmin (1/2)x'Qx + q'x

x ¢ R®

subject to Ax < b,
where Q is a positive definite n x n 'matrix, q is an n x 1 vector, A is
an m X n matrix, and b is an m x 1 vector. It can be shown that the

following problem is dual to (P).

(D) min (1/2)w'Kw + k'w

w e R®
subject to w > 0,

where K = AQ'IA' and k = AQ_1q+b. If (P) is feasible, then (P) has a

solution x*, (D) has a solution w*, and

R T T O Y e L L O




x* = Q" lia'w* + q].
(See the discussion in section I.3.1l.)

We now consider the case when (P) is infeasible. To analyze this

case, we use the perturbed problem in (x, s):

. 1
' 'y + — g!
(P.) min (1/2)x'Qx + q'x 7¢ 9'S
x ¢ R®

s € R®
subject to Ax + s < b,

with ¢ > 0. Clearly, (Pe) is always feasible. Note that (Pe) is not
defined at e.- 0, so that it is not clear that as € + O the solution of
(Pe) will be related to the solution of (P). Also note that s is not a

slack variable since it is unconstrained in sign.

Given any X, it is necessary to choose s so that for each i,

i=1, ...,m:

(Ax—b)i<0->si-0

(Ax-b)i>0"si.-(Ax-b)i,

in order to minimize the objective function of (Pe) over s. Thus we

have

LR R AR I I N R LRy |
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", Prop. Bl: (P e) is equivalent to the unconstrained problem

*
.
T

A 1

o min (1/2)x'Qx + q'x + T (Ax - b);'(Ax - b), -

-f..- b4

o

<o Let

( [ 4
‘._.

-:_.:d Z = {x: '(Ax - b)+|§ < I(Az - b)+|% for all z ¢ R®},
4

s 1.e., Z is the set of points in R® closest to feasibility in that the
fg:: residual vector is smallest in norm. Note that Z is a convex set with
~a Z = {x: Ax < b } 1f the latter set is nonempty.

®

2:_.

3

*'l
'if;.
2 . : 1 1 -1
{ Example Bl: A= |-1 Ol and b = 0

o 0 -1 0
L,

N

DAY

.’\

v Define the constraints:

2 i

)

X ? 0

[

= x3 20 i
‘, which are clearly inconsistent. In this case, Z = {(-1/4, -1/4)}. o
g 1 1 -1

.::'; Example B2: A=1_, l and b = | o l
e
o

:_:J

" .

I-J;

”, B-4

%
s"-

A

M

IV A



g 3 = - 3 Ty X v e el
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h&ﬂ Define the constraints:
3
Y

4 0 a
.
)
4
Ly

2ty

x) + Xy > 2

LN

.\'/‘llt-
|\
~

s

which are also inconsistent. In this case, Z = {x: X + xp = 1/2}.

'.‘ 0‘ ‘.
. [ - "
Pt e
« v ¢ 8 3

(Pe) is a strictly convex program so that for every € > 0 there

0, ¥, Rl
F S

/

exists a unique solution (xF, s€) with

R

<

X

v, 8
5

(Bl) s% = -(Ax® - b),.

1 @

DRI

-
o

¢

& A

Let

Pl

LIS - 0
.‘ Pl
., e % S

Y= |(Ax - b)+|% for x e Z (y > 0),

.:v b
AN

n=min {(1/2)x'Qx + q'x},
x

v R .';'-‘
D

L

.q.’ l' a

d’ L)
)
Y

and

, ‘ ‘..'. .b"‘.

B
2 /e

g=min (1/2)x'Qx + q'x € >»n.
x el

.l
j
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: 1 1
Qe(x,s) = (1/2)x'Qx + q'x +'§E s's = Q(x) +-7€ s's,
where Q(x) = (1/2)x'Qx + q'x, we have
+ 51y € Q(xE, 88) < L+ -
n ZSY € ’ ZEY’
which implies Qe(xe, 8% >+ »ag g + 0 if and only if y > 0. Thus
1 1
€ € -1 . € 1 er,e _ ]
(B2) n < Q(x% 8%) -7 v = Qx®) +352(s%'s" - y) < ¢
Now it follows from (Bl) that s®'s® - y > 0. Therefore, since |xs| > @
implies Q(x%) + + =, (B2) implies that {x®} must remain bounded and
hence
(B3) (s%'s® - y) = 0(¢).
We are led to the following result.

Prop. BZ:. Let {x%, s®))} be the family of solutions to (Pe)' Then

lim (x5, s = (x, 8 )
€ *> 0+

where x is the unique solution to the problem
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min (1/2)x'Qx + q'x
x

subject to x € Z.

Pf: It follows from the earlier comments that {x€} 18 bounded.

Let x be any limit point of {x%}, i.e., there is a sequence {el} » ot

such that

€ ~
lim x L. x
L+

It follows from (Bl) that

- : gy g ' »
s =1lim s * = -lim (Ax * - b), = ~(Ax - d),
Lro L+ .

exists and from (B3) that § 's = Y. Thus, x € Z. Now suppose, for

contradiction, there is an x° ¢ Z such that
Q(x) = (1/2)x'Qx + q'x > (1/2)x°'Qx® + ¢'x° = Q(x°).

Let s° = -(ax® - b),. Then, for any €y

B-7
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o . Qel(x°. %) - Qel(xs“, s -

Q=) - =Y + 2—15—2 (y- s <o

L
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»
1]

.
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€ €
which contradicts the definition of (x 1, s 4. ‘

"‘,'
ﬁ?ﬁ'
)

AL

If (P) is feasible, (i, §) = (x*, u*), where u* is the multiplier of the

CALS l"
"

«

»

0

dual problem to (P) and x* is the solution to (P). Proposition B2 is a

—
s - [

special case of the penalty function theory for nonlinear programming.

A Sy

. )
D SOV NN
B ARS

Let (x%, s%) be the solution to (P) and let

’,

'n‘:':.l:-‘ .

Jo = {3: (AxE - b)j > 0},

i.e., Je is the index set of violated constraints. Using the
unconstrained form of (Pe) (see Problem Bl) we have that x% i{s a

solution of

MY min (1/2)x'Qx + q'x +-7% |(Ax - b)+|%
1-\ - X

I
’k 4."- '-":‘

)

if and only if

hY

)
l.'
(&
©

Qx€+q+1;{z: A (x® - b)) = 0.
tel
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To construct a dual for (Pe)’ we consider the Lagrangian functiom
Le(x, s, w) = (1/2)x'Qx + q'x + 7% s's + w'(Ax + s = b).
<Pe) is equivalent to

Qu(x, 8): Ax + s < b
inf sup Le(x, s, w) = inf
(x,8) w3 0 (x,8) + : otherwise

and we define the dual problem to be

sup inf Léx,s,w%
w>»0 (x,8)

For a given w > 0, we have that (xw, s,) minimizes Le(x, s, w) if and

only if

Qx, + q + A'w=0

and

LY L

8y +ws= 0,

Solving for X, and 8, ve obtain
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o x, = Q"1 [A'w + q]
(; ‘ and
S " =EWe

Therefore, f

e Le(xys Sys W) = (L/2)(A'w + @' roq (AW + q)

' la'w + @) + z—t e2 w'w

= +' (-AQ 1A' - AQ" g - ew - b)

= =(1/2)w'AQ"tA'w - (AQ"1q + B)'w = (1/2)ew'w - (1/2)q'Q'1q

[ 2 -‘l
R

-
SN

and hence we have the following proposition.

o~
A

.,
»
o

Prop. B3: Solving the quadratic program

.
NSO
~- ’t,“-‘-’."

(De) min (1/2)w' (K + el)w + k'w,

w ¢ R®

‘*l
LA

a s 2 u

where

4

._._...h&

LA

K = AQ~la’

& N

and )

k= A lq+ b
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‘}5 is equivalent to solving (Pe)' Finally, we obtain the following !
(*. theoren. !
j
:: Theorem (Theorem 3 of Section I.3.l1): Let {w%} be the family of
*r. ' solutions to (De) for positive values of ¢ and for each ¢ let x€ be
N given by
N |
{ | x€ = -Q_]'[A'we + q].
2
...'-
\:_
¢ Then
159
®
o
s -
N 1im x% = x»
- +
-‘: e+>0
‘s,
~I
( -
35 where ¥ is a solution of the problem
- min (1/2)x'Qx + q'x.
xez

Pf: Propositions Bl, B2, and B3 imply the theorem for problems

having inequality constraints. Extension of the proof to include

o

|
N0

equality constraints is straightforward.
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